Algèbre linéaire 1

- 1 Soit $f \in L(E,F)$. Montrer que l'image de toute famille liée est liée. Montrer que f est injective SSI l'image de toute famille libre est libre. Montrer que l'image de toute famille génératrice de E est une famille génératrice de Im f (et non de F!). Montrer que f est surjective SSI l'image de toute famille génératrice de E est une famille génératrice de F.
- 2 Soit $E = C^{\infty}(\mathbb{R}, \mathbb{R})$. Soit u et v définis par u(f) = f et v(f) primitive de f nulle en 0. Montrer que $u, v \in L(E)$. Sont-ils injectifs, surjectifs ? Calculer u ov . Montrer que p = v ou est un projecteur. Trouver Im p, Ker p. Existe-t-il $w \in L(E)$ tel que $w^2 = u$?
- 3 Soit f et g deux éléments de L(E) tels que f o g = Id. Montrer que $\operatorname{Ker} f = \operatorname{Ker} g$ o f, $\operatorname{Im} g = \operatorname{Im} g$ o f, $E = \operatorname{Ker} f \oplus \operatorname{Im} g$. Que dire dans le cas où E est de dimension finie? On suppose $E = \mathbb{R}[X]$, et f défini par f(P) = P'; existence de g?
- **4** Soit E un EV de dimension n, a un élément de E, f un élément de L(E). On suppose que $(f(a),...,f^n(a))$ est libre. Montrer que $(a, f(a),...,f^{n-1}(a))$ est une base de E, et que $f \in GL(E)$.
- 5 $f \in GL(E)$ et rg g = 1. Montrer que $f + g \in GL(E)$ SSI tr $g \circ f^{-1} \neq -1$.
- **6** Soit $E = \mathbb{R}[X]$, $P_n = X^n + X^{n+1}$. Montrer que $(P_n)_{n \in \mathbb{N}}$ est libre, décrire le SEV F engendré, donner sa dimension et un supplémentaire.
- 7 F, G, H étant des SEV de E, comparer $F + (G \cap H)$ et $(F + G) \cap (F + H)$, $F \cap (G + H)$ et $(F \cap G) + (F \cap H)$. Donner des exemples en dimension 3. Soit E, F, G SEV d'un même EV tels que $F \subset G$, $E \cap F = E \cap G$, E + F = E + G. Montrer que F = G.
- **8** Soit *B* une base de *E* EV de dimension *n*, et *F* un SEV ne contenant aucun vecteur de *B*. Que dire de dim *F* ?
- 9 Soit $X = (x_1,...,x_n)$ et $s \le n$. Soit $Y = (x_1,...,x_s)$. Montrer que $\operatorname{rg} Y \ge \operatorname{rg} X + s n$. On suppose X libre; trouver $\operatorname{rg}(x_1 + x_2, x_2 + x_3,...,x_n + x_1)$ et décrire le SEV engendré; $\operatorname{rg}(x_i - x_i)_{1 \le i, i \le n}$?
- **10** Soit f une fonction de \mathbb{R} dans \mathbb{R} , et $f_n = f \times f \times ... \times f$. CNS pour que $(f_n)_{n \in \mathbb{N}^*}$ soit libre?
- 11 F et G étant des SEV de E, que dire si $F \cup G$ est un SEV de E?
- 12 $P_0 = 1$, $P_n' = P_{n-1}$ et $P_n(0) + P_n(1) = 0$ si n > 0. Montrer que cela définit une suite unique ; $d^{\circ} P_n$? Terme dominant? Montrer que $P_n(X) + P_n(X+1) = \frac{2}{n!}X^n$ et que P_n est le seul polynôme vérifiant cette formule. Montrer que $P_n(1-X) = (-1)^n P_n(X)$. Etudier P_n en 0, 1, 1/2 et ses variations sur [0,1].
- **13** Soit u élément de L(E) tel que : $\forall x \in E$, $\exists \lambda \in K$, $u(x) = \lambda x$. Montrer que : $\exists \lambda \in K$, $u = \lambda Id$. Soit u, v éléments de L(E) tels que : $\forall x \in E$, $\exists \lambda \in K$, $u(x) = \lambda v(x)$. Montrer que : $\exists \lambda \in K$, $u = \lambda v$.
- **14** Montrer que les familles suivantes sont libres dans $\mathbb{R}^{\mathbb{R}}$: $f_a: x \to |x-a|$ (remarquer que f_a n'est pas dérivable au point a), g_n : fonction caractéristique de $]0, n[, f_n: x \to \cos^n x, g_a: x \to \frac{1}{x^2 + a^2}$ (a > 0) (utiliser les propriétés des polynômes).

- **15** K = \mathbb{Q} . Montrer que $(1, \sqrt{2}, \sqrt{3})$, $(\ln p)_{p \in P}$ sont libres (où P est l'ensemble des nombres premiers).
- **16** Soit $F \subset E = M_n(\mathbb{R})$ l'ensemble des matrices dont la somme des coefficients de toute ligne et de toute colonne est nulle. Montrer que F est un SEV de E et trouver sa dimension.
- 17 Soit D une matrice diagonale de $M_n(\mathbb{C})$. Montrer que les coefficients diagonaux de D sont distincts SSI $(I_n, D, ..., D^{n-1})$ est libre.
- **18** Soit E' un SEV de E, F' un SEV de F, et $u \in L(E,F)$.

Montrer que dim $u(E') \ge \dim E' - \dim \operatorname{Ker} u$ et dim $u^{-1}(F') \le \dim F' + \dim \operatorname{Ker} u$.

Plus difficile : si E = F, dim $u^{-1}(E') \ge \dim E'$.

- 19 Soit E un EV de dimension finie, f et g des éléments de L(E).
- a Si Im f + Im g = Ker f + Ker g = E, montrer que ces sommes sont directes.
- **b** Montrer que : $\operatorname{rg}(f+g) = \operatorname{rg} f + \operatorname{rg} g$ SSI $\operatorname{Im} f \cap \operatorname{Im} g = \{0\}$ et $\operatorname{Ker} f + \operatorname{Ker} g = E$.
- **20** $a_{i,j} = i + j$, $b_{i,j} = (i + j + 1)^2$. rang A, rang B?
- 21 Soit E EV de base $B = (e_1, ..., e_n)$. Chercher les SEV stables par tout automorphisme permutant B.
- 22 Soit X ensemble fini non vide, à n éléments. Montrer que \mathbb{R}^X est de dimension finie n sur \mathbb{R} . Soit X un ensemble infini. Montrer que \mathbb{R}^X n'est pas de dimension finie sur \mathbb{R} .
- 23 Soit $n = \dim E$, et $F_1, ..., F_k$ des SEV de E tels que $\sum_{j=1}^k \dim F_j > n(k-1)$.

Montrer que leur intersection est différente de {0}.

- 24 Soit $n = \dim E$, $u \in L(E)$, 0 < k < n. Si tout SEV de dimension k est stable par u, que dire de u?
- 25 Soit $h \in L(E)$; caractériser les SEV F de E tels que $h(h^{-1}(F)) = h^{-1}(h(F))$.
- 26 Soit (L_n) une suite croissante de parties libres de E. Montrer que leur réunion est libre.
- 27 Soit a et b des éléments distincts de K, et $P_k = (X-a)^k (X-b)^{n-k}$. Montrer que $(P_k)_{0 \le k \le n}$ est libre.
- **28** Montrer que : $\forall Q \in \mathbb{R}[X], \exists ! P \in \mathbb{R}[X], P(X+1) + P(X-1) = Q(X)$. On pourra commencer par le cas de $\mathbb{R}_n[X]$. Montrer que si Q est pair (impair) alors P est pair (impair).
- **29** Soit G contenu dans (L(E), o), stable et constituant un groupe pour la loi induite. Montrer que e est un projecteur et que les éléments de G ont tous la même image et le même noyau.
- 30 Soit U et V des matrices colonnes d'ordre n. On pose $H = I_n \alpha U'V$. Trouver à quelle condition H est inversible, et dans ce cas calculer son inverse.
- **31** Soit G un groupe, K un corps, $e_1,...,e_n$ des morphismes distincts de G dans K^* . Montrer que $(e_1,...,e_n)$ est libre dans K^G .