Séries entières

Contents

1	Gér	éralité	és	4
	1.1			4
	1.2			4
	1.3			4
	1.0	1.3.1		4
		1.3.1 $1.3.2$		4
		1.3.2 $1.3.3$	•	5
		1.3.3 $1.3.4$		5
	1 4		•	
	1.4	Exem	<u> </u>	5
	1.5	_	į e	5
		1.5.1	<u>*</u>	5
		1.5.2		6
		1.5.3		6
		1.5.4		6
		1.5.5	Utilisation de la règle de d'Alembert	7
		1.5.6	Un lemme utile	7
	1.6	Conve	ergence normale	7
	1.7	Somm	le	8
		1.7.1	Théorème	8
		1.7.2	Démonstration	8
		1.7.3	Exemples	8
	1.8	Produ	iit de Cauchy	8
		1.8.1	Théorème	8
		1.8.2	Exemples	9
		1.8.3	1	9
	1.9	Quela	S S S S S S S S S S S S S S S S S S S	9
	1.0	1.9.1		9
		1.9.2		9
		1.9.3	-	0
		11010	ziemarque i i i i i i i i i i i i i i i i i i i	
2			ère d'une variable réelle 1	
	2.1		tivation de la somme d'une série entière	
		2.1.1		0
		2.1.2	Exemple à connaître : ln	0
		2.1.3	Exemple à connaître : arctan	1
	2.2	Dériva	ation	1
		2.2.1	Théorème	1
		2.2.2	Expression des dérivées	1
		2.2.3	Expression des coefficients	1
		2.2.4	Remarque	1
	2.3	Exem	-	
	2.4		proctions C^{∞}	
	-	2.4.1	$f: t \to \frac{\sin t}{t} \text{ sur } \mathbb{R}$	
		2.4.2	$g: t \to \frac{t}{t} - \frac{1}{\sin t} \operatorname{sur}] - \pi, \pi [\qquad \qquad 1$	2
		2.4.3		2
	2.5		$t ightarrow \frac{t}{\operatorname{ch} t - 1} \operatorname{Sur} \mathbb{R}$	
	۵.۵			
		2.5.1	$(E): xy'' + y' + xy = 0 \qquad 1$	4
		2.5.2	Chercher les solutions de (E) développables en série	<u>م</u>

		2.5.3	Expression intégrale
	2.6	Complé	${ m ment}$: étude en R^-
		2.6.1	Exercice 1
			Exercice 2
			Exercice 3
			Application: la continuité radiale
			Un exemple
3	Fon	ctions d	léveloppables en série entière 16
	3.1	Définiti	ons
		3.1.1	Fonction DSE
		3.1.2	Série de Taylor
		3.1.3	Théorème
		3.1.4	Remarques
	3.2	$x \to (1$	$(\alpha \in \mathbb{C})^{\alpha}$
	3.3	,	e: arcsin
			Développement en série entière
			Etude aux bornes
			Exercice
	3.4		is non DSE
	3.5		etions rationnelles
	0.0		Rappel
			Développement en série entière
			• •
		3.3.3	Le rayon
4	Exe	rcices	19
_	4.1		ne équation différentielle $\dots \dots \dots$
	4.2		ne série double
	4.3	tan est	développable en série entière sur $I = \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\dots 20$
	1.0	4.3.1	Les dérivées de tan
		4.3.2	tan est DSE sur $I = \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\dots $
	4.4	7.0.2	tail est DSE sur $I = \int -\frac{\pi}{2}, \frac{\pi}{2} [\dots \dots \dots$
	4.4	$\sum_{n=0}^{\infty} e^{-n}$	
		4.4.1	$f(x) = \sum_{n=0}^{\infty} e^{-n} \cdot \cos(n^2 x) \cdot \dots \cdot \dots \cdot 2$
			C^{∞}
			DSE ?
			Réponse
	4.5		k = n
			$egin{array}{lll} ext{M\'ethode \'el\'ementaire} & \dots & $
		4.5.2	Avec sommation par paquets
5	Con	nplémei	ats 22
9	5.1	_	inuité radiale
	0.1		Un cas particulier simple
			Un autre cas particulier simple
			Démonstration du cas général
			9
	ت م		<u> -</u>
	5.2		ns entières bornées sur \mathbb{C}
			$I_p(r) = 2\pi . a_p . r^p$
	- 0		Le théorème de Liouville
	5.3		ctions analytiques
			Définition
			ζ est analytique sur $]1, +\infty[$
			La somme d'une série entière est analytique 23
	5.4		os
			Un zéro isolé
			Généralisation
	5.5	Inverse,	méthode 1
	5.6		me sur le produit
	5.7		méthode 2
	5.8	Général	lisation: la composition

5.9	Localisation des racines d'un polynôme dans $\mathbb{C}.$						
	5.9.1	Intégrale curviligne	29				
	5.9.2	Un calcul d'intégrale curviligne	29				
	5.9.3	Application aux racines des polynômes	29				

Introduction

Citer des fonctions dites "usuelles"; points communs à ces fonctions? En particulier, que dire de leurs zéros?

Soit f la restriction de exp à \mathbb{R}^- .

Comment la prolonger en une fonction de classe C^n sur \mathbb{R} ?

Comment la prolonger en une fonction de classe C^{∞} sur \mathbb{R} ?

Y a-t-il unicité du prolongement?

Réponse

$$f\left(x\right) = e^x + C.x^{n+1}$$

$$f(x) = e^x + C.e^{-\frac{1}{x}}$$

Généralités 1

Séries entières (power series)

Une série entière est une série de fonctions $\sum a_n z^n$, où $a=(a_n)\in\mathbb{C}^{\mathbb{N}}$.

1.2Lemme d'Abel

Si la suite $(a_n z_0^n)$ est bornée alors, pour tout nombre complexe z tel que

$$|z| < |z_0|$$

la série $\sum a_n z^n$ est absolument convergente.

Démonstration

$$\forall n \ge 0, |a_n.z^n| = |a_n.z_0^n| \cdot \left| \frac{z}{z_0} \right|^n \le M \cdot \left| \frac{z}{z_0} \right|^n$$

Domination par une série géométrique convergente.

Rayon de convergence d'une série entière $\sum a_n z^n$ 1.3

Définition 1.3.1

Notation non officielle:

$$B_a = \{t \ge 0 / (a_n t^n) \text{ born\'ee}\}$$

On appelle rayon de convergence la borne supérieure dans $\overline{\mathbb{R}}$ de B_a . On le notera R_a , ou R.

1.3.2 Premiers exemples

Trouver B_a dans les cas suivants :

$$a_n = 1$$
; $a_n = n$; $a_n = \frac{1}{2^n}$; $a_n = n!$; $a_n = \frac{1}{n!}$

Réponse

-
$$a_n = 1$$
; $B_a = [0, 1]$

$$-a_n = n$$
; $B_a = [0, 1]$

$$-a_n = \frac{1}{2n}$$
; $B_a = [0, 2]$

$$-a_n = n!$$
; $B_a = \{0\}$

$$a_n = \frac{1}{2^n}; B_a = [0, 1]$$

$$-a_n = \frac{1}{2^n}; B_a = [0, 2]$$

$$-a_n = n!; B_a = \{0\}$$

$$-a_n = \frac{1}{n!}; B_a = \mathbb{R} +$$

1.3.3 Théorème

- Si |z| < R, la série $\sum a_n z^n$ est absolument convergente.
- Si |z| > R, $(a_n z^n)$ n'est pas bornée.

En particulier, la série $\sum a_n z^n$ diverge grossièrement.

Démonstration

Cas où |z| < R: il existe $t \in B_a$ tel que $|z| < t \le R$.

Le lemme d'Abel montre que la série $\sum a_n z^n$ est absolument convergente.

1.3.4 Questions fréquentes

Soit $z \in \mathbb{C}$ fixé ; que dire de R si $(a_n z^n)$

- 1- est bornée.
- 2- est non bornée.
- 3- tend vers 0.
- 4- converge.
- 5- diverge.
- 6- possède une suite extraite bornée.
- 7- possède une suite extraite non bornée.
- 8- tend vers une limite non nulle L.

Réponses

- 1- $R \ge |z|$.
- 2- $R \le |z|$.
- 3- $R \geq |z|$.
- 4- $R \ge |z|$.
- 5- $R \le |z|$.
- 6- Rien.
- 7- $R \leq |z|$.
- 8- R = |z|.

1.4 Exemples

$$a_n = 1$$
; $a_n = \frac{1}{n}$; $a_n = \frac{1}{n^2}$; $a_n = \frac{1}{2^n}$; $a_n = n!$; $a_n = \frac{1}{n!}$; $a_n = n$; $a_n = n^{(-1)^n}$; $a_n = \frac{1}{\sqrt{n!}}$; $a_n = \sqrt{n!}$; $\sum z^{n^2}$

Réponse

Pour $a_n = \frac{1}{\sqrt{n!}}$: Soit t > 0 et $u_n = a_n t^n$; alors:

$$\forall n > 0, \, \frac{u_n}{u_{n-1}} = \frac{t}{\sqrt{n}}$$

Suite qui tend vers 0 ; donc, d'après la règle de d'Alembert, $\sum u_n$ converge. Donc $R = +\infty$.

Propriétés du rayon de convergence

1.5.1Comparaison

Théorème

Si (a_n) est dominée par (b_n) :

$$R_a \ge R_b$$

5

Si $a_n \sim b_n$?

Démonstration

Si (a_n) est dominée par (b_n) , $B_b \subset B_a$, d'où $R_a \geq R_b$. Si $a_n \sim b_n$, chacune des deux est dominée par l'autre, donc $R_a = R_b$.

1.5.2Série $\sum na_nz^n$

Théorème

Le rayon de convergence R' de

$$\sum na_nz^n$$

est égal au rayon de convergence R de $\sum a_n z^n$.

Démonstration

 $R' \leq R \operatorname{car}(a_n)$ est dominée par $(n.a_n) = (b_n)$. Soit $r \in]0, R[$; fixons s dans]r, R[; on a alors :

Remarquons que $b_n.r^n = n.a_n.r^n = a_ns^n.n\left(\frac{r}{s}\right)^n$; or

- $(a_n.s^n)$ tend vers 0 car 0 < s < R- $n\left(\frac{r}{s}\right)^n$ tend vers 0 par croissances comparées Donc $(b_n.r^n)$ tend vers 0, donc $R' \ge r$.

En conclusion:

 $R' \geq r$ pour tout élément $r \in [0, R[$, donc :

$$R' \geq R$$

1.5.3 Série $\sum n^{\alpha}.a_nz^n$

Exercice

Pour tout α réel, le rayon de convergence R' de

$$\sum n^{\alpha}.a_n z^n$$

est égal au rayon de convergence R de $\sum a_n z^n$.

Démonstration

Pour $\alpha = p$ entier, récurrence sur p.

Pour le cas général, on utilise $p = |\alpha|$:

 n^p est dominé par n^{α} et n^{α} est dominé par n^{p+1} .

1.5.4 Exercice

Que dire de R_b dans le cas où

- $-b_n=|a_n|$
- $-b_n = \frac{1}{2^n} a_n$ $-b_n = \frac{a_n}{n!}$ $-b_n = a_{n+1}$

Réponse

- $R_b = R_a$
- $R_b = 2.R_a$
- Si R_a est non nul, R_b est infini ; si $R_a = 0$, on ne peut pas conclure ; exemples?
 - $R_b = R_a$

Remarque

Avec ce qui précède, on constate que $\sum a_n z^n$ et $\sum (n+1) a_{n+1} z^n$ ont le même rayon de convergence :

La série dérivée a même rayon que la série de départ.

1.5.5 Utilisation de la règle de d'Alembert

Exercice

A l'aide de la règle de d'Alembert, montrer que si $\left(\left|\frac{a_{n+1}}{a_n}\right|\right)$ admet une limite $L\in[0,+\infty]$, alors

 $R = \frac{1}{L}$

1.5.6 Un lemme utile

On suppose R non nul; montrer que

$$\exists A > 0, \exists B > 0, \forall n \ge 0, |a_n| \le A.B^n$$

Si de plus $a_0 = 1$, montrer que

$$\exists C > 0, \forall n \ge 0, |a_n| \le C^n$$

Démonstration

Soit $t \in [0, R[; (a_n t^n) \text{ est bornée} :$

$$\exists M > 0, \forall n \ge 0, |a_n.t^n| \le M$$

Il suffit de choisir A = M et $B = \frac{1}{t}$.

Si de plus $a_0 = 1$:

 $A \ge 1$, donc C = AB convient.

1.6 Convergence normale

Théorème

La convergence d'une série entière est normale sur tout disque fermé de centre 0 et de rayon r < R.

Démonstration

Il faut majorer $|a_n.z^n|$ par un u_n , indépendant de z, qui soit le terme général d'une série (numérique) convergente.

Réponse

$$u_n = |a_n.r^n|$$

Corollaire

La somme d'une série entière est continue sur le disque ouvert de convergence.

7

1.7 Somme

1.7.1 Théorème

Soit $f(z) = \sum_{n=0}^{\infty} a_n z^n$ et $g(z) = \sum_{n=0}^{\infty} b_n z^n$; soit $c_n = a_n + b_n$ et

$$h\left(z\right) = \sum_{n=0}^{\infty} c_n z^n$$

Alors:

$$R_c \ge \min\left(R_a, R_b\right)$$

Si $R_a \neq R_b$:

$$R_c = \min\left(R_a, R_b\right)$$

Evidemment, h = f + g sur le disque ouvert de rayon min (R_a, R_b) .

1.7.2 Démonstration

Supposons par exemple

$$0 < R_a < R_b$$

- si $|z| < R_a$, alors $\sum a_n z^n$ et $\sum b_n z^n$ sont absolument convergentes, donc $\sum c_n z^n$ converge.
- si $R_a < |z| < R_b$, alors $\sum a_n z^n$ diverge et $\sum b_n z^n$ converge, donc $\sum c_n z^n$ diverge.

Conclusion:

$$R_c = R_a$$

1.7.3 Exemples

 $R_c = \min(R_a, R_b)$: si f = g. $R_c > \min(R_a, R_b)$: si f = -g avec un rayon fini. Un exemple où $R_a = 1$, $R_b = 1$, $R_{a+b} = 2$?

Réponse

$$a_n = -1, b_n = 1 + \frac{1}{2^n}.$$

1.8 Produit de Cauchy

1.8.1 Théorème

Soit
$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 et $g(z) = \sum_{n=0}^{\infty} b_n z^n$; soit

$$c_n = \sum_{k=0}^n a_k b_{n-k}$$

et $h(z) = \sum_{n=0}^{\infty} c_n z^n$; alors:

$$R_c \ge \min\left(R_a, R_b\right)$$

De plus, h = f.g sur le disque ouvert de rayon min (R_a, R_b) .

Démonstration

Soit $z \in \mathbb{C}$ tel que $|z| < \min(R_a, R_b)$. Posons $u_n = a_n.z^n, v_n = b_nz^n$ et

$$w_n = \sum_{k=0}^n u_k . v_{n-k}$$

On constate que $w_n = c_n.z^n$.

Les deux séries $\sum u_n$ et $\sum v_n$ étant absolument convergentes, on sait que :

-
$$\sum w_n$$
 est absolument convergente
- $\sum_{n=0}^{\infty} u_n$. $\sum_{n=0}^{\infty} v_n = \sum_{n=0}^{\infty} w_n$
Conclusion:

$$h\left(z\right) = f\left(z\right).g\left(z\right)$$

1.8.2 Exemples

Avec
$$\frac{1}{1-z}$$
, $1-z$, $\frac{2-z}{1-z}=1+\frac{1}{1-z}$, $\frac{1-z}{2-z}$...

1.8.3 Intégrité

Exercice

Soit f et g deux fonctions non nulles sommes de séries entières de rayon non

Alors h = fg est non nulle.

Quelques fonctions usuelles

Définitions

Pour tout $z \in \mathbb{C}$:

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}$$

$$\operatorname{ch} z = \frac{1}{2} \left(e^{z} + e^{-z} \right) = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}$$

$$\operatorname{sh} z = \frac{1}{2} \left(e^{z} - e^{-z} \right) = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$$

$$\operatorname{cos} z = \frac{1}{2} \left(e^{iz} + e^{-iz} \right) = \operatorname{ch} iz = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n}}{(2n)!}$$

$$\operatorname{sin} z = \frac{1}{2i} \left(e^{iz} - e^{-iz} \right) = -i.\operatorname{sh} iz = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n+1}}{(2n+1)!}$$

Toutes ces fonctions sont entières, c'est-à-dire sommes d'une série entière sur \mathbb{C} .

1.9.2 Propriétés

$$\exp(a+b) = \exp(a) \exp(b)$$
$$\cos^2 + \sin^2 = 1$$
$$\cosh^2 - \sinh^2 = 1$$

Démonstration

Posons $u_n = \frac{a^n}{n!}$, $v_n = \frac{b^n}{n!}$ et

$$w_n = \sum_{k=0}^n u_k . v_{n-k}$$

On constate que

$$w_n = \frac{1}{n!} \left(a + b \right)^n$$

Les deux séries $\sum u_n$ et $\sum v_n$ étant absolument convergentes :

$$\exp(a+b) = \exp(a)\exp(b)$$

1.9.3 Remarque

Passage d'une formule de trigonométrie à une formule de trigonométrie hyperbolique :

On remplace

- cos par ch.
- $\sin \operatorname{par} i.\operatorname{sh}$.
- $\tan par i.th$.

2 Série entière d'une variable réelle

2.1 Primitivation de la somme d'une série entière

2.1.1 Théorème

Soit $f(x) = \sum_{n=0}^{\infty} a_n x^n$ définie sur]-R, R[; alors

$$F(x) = \sum_{n=0}^{\infty} a_n \frac{x^{n+1}}{n+1}$$

est une primitive de f sur]-R,R[.

Les deux ont le même rayon de convergence.

Démonstration

Application directe du théorème de primitivation terme à terme.

2.1.2 Exemple à connaître : ln

$$\forall x \in I =]-1, 1[, \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}]$$

On en déduit que

$$\forall x \in I, \sum_{n=1}^{\infty} \frac{x^n}{n} = -\ln(1-x)$$

$$\forall x \in I, \sum_{n=1}^{\infty} (-1)^{n-1} \cdot \frac{x^n}{n} = \ln(1+x)$$

Exercice

En 1?

Réponse

En 1, la série converge (TSA).

Montrons que l'égalité est également vérifiée en ce point : Notons

$$R_n(x) = \sum_{k=n+1}^{\infty} (-1)^{k-1} \cdot \frac{x^k}{k}$$

$$\forall x \in J = [0, 1], |R_n(x)| \le \frac{x^{n+1}}{n+1} \le \frac{1}{n+1}$$

majorant indépendant de x et qui tend vers 0.

Donc la série converge uniformément sur J.

Donc la somme est continue sur J.

Par passage à la limite, l'égalité est aussi vérifiée en 1 :

$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n-1}}{n} = \ln 2$$

2.1.3 Exemple à connaître : arctan

$$\forall x \in I =]-1, 1[, \sum_{n=0}^{\infty} (-1)^n x^{2n} = \frac{1}{1+x^2}$$

D'où

$$\forall x \in I, \sum_{n=0}^{\infty} \frac{\left(-1\right)^n x^{2n+1}}{2n+1} = \arctan x$$

En -1? en 1?

De manière analogue au cas de $\ln(1+x)$, on montre qu'il y égalité au point 1.

2.2 Dérivation

2.2.1 Théorème

La somme d'une série entière

- est de classe C^{∞} sur l'intervalle ouvert de convergence I =]-R, R[.
- Ses dérivées s'obtiennent par dérivation terme à terme.
- Toutes ont le même rayon de convergence.

Démonstration

Théorème de dérivation de la somme d'une série de fonctions \mathbb{C}^1 :

On note

$$u_n(x) = a_n x^n$$

- Les u_n sont de classe C^1 sur I.
- La série converge simplement sur I.
- La série des dérivées converge uniformément sur tout segment contenu dans I.

Donc la somme est de classe C^1 sur I.

On en déduit aisément par récurrence sur p que la somme est de classe \mathbb{C}^p sur I.

2.2.2 Expression des dérivées

$$\forall x \in]-R, R[, f'(x) = \sum_{n=1}^{\infty} n.a_n.x^{n-1}]$$

$$\forall p \ge 0, \forall x \in]-R, R[, f^{(p)}(x) = \sum_{n=p}^{\infty} n. (n-1)... (n-p+1).a_n.x^{n-p}$$

$$\forall p \ge 0, \forall x \in]-R, R[, f^{(p)}(x) = \sum_{n=p}^{\infty} \frac{n!}{(n-p)!} a_n x^{n-p}$$

2.2.3 Expression des coefficients

Soit $f(x) = \sum_{n=0}^{\infty} a_n x^n$ définie sur]-R, R[, avec R non nul. Alors, pour tout $p \ge 0$:

$$a_p = \frac{f^{(p)}(0)}{p!}$$

2.2.4 Remarque

Si $\sum_{n=0}^{\infty} a_n x^n$ et $\sum_{n=0}^{\infty} b_n x^n$ coïncident sur un voisinage de 0, alors pour tout n,

$$a_n = b_n$$

2.3 Exemples

Donner une expression simple de

$$f(x) = \sum_{n=0}^{\infty} nx^n, \ g(x) = \sum_{n=0}^{\infty} n^2 x^n$$

Réponse

$$\sum_{n=0}^{\infty}x^{n}=\frac{1}{1-x}$$
 sur $I=\left]-1,1\right[$; d'où $f\left(x\right)=\frac{x}{(1-x)^{2}}$; $g\left(x\right)=\frac{x(x+1)}{(1-x)^{3}}$.

2.4 Des fonctions C^{∞}

En utilisant des séries entières, montrer rapidement que certaines fonctions sont de classe C^{∞} :

2.4.1 $f: t \to \frac{\sin t}{t} \mathbf{sur} \mathbb{R}$

2.4.2
$$g: t \to \frac{1}{t} - \frac{1}{\sin t} \text{ sur }]-\pi, \pi[$$

Il faut l'écrire

$$g\left(t\right) = \frac{\frac{\sin t - t}{t^2}}{f\left(t\right)}$$

Application

Soit

$$I_{n} = \int_{0}^{\frac{\pi}{2}} g(t) \cdot \sin nt dt$$

On montre que (I_n) tend vers 0 (comment ?).

Par ailleurs, on montre que

$$\forall n \ge 0, \ J_{2n+1} = \int_0^{\frac{\pi}{2}} \frac{\sin(2n+1)t}{\sin t} dt = \frac{\pi}{2}$$

Pour cela, on calcule $J_{2n+3} - J_{2n+1}$.

De là on déduit que

$$\int_0^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}$$

2.4.3 $t \to \frac{t.\sin t}{\cosh t-1}$ sur \mathbb{R}

$$h\left(t\right) = \frac{f\left(t\right)}{\frac{\mathrm{ch}t - 1}{t^{2}}}$$

2.5 Exemple : la fonction J_0 de Bessel

2.5.1 (*E*):
$$xy'' + y' + xy = 0$$

Que dire de la dimension de l'ensemble des solutions sur $I=]0,+\infty[$? Sur $J=]-\infty,0[$? Sur $\mathbb R$?

Réponse

 $\dim S_I = 2 = \dim S_J$; qu'en déduire pour $\dim S_{\mathbb{R}}$? L'application

$$y \to (y(1), y'(1), y(-1), y'(-1))$$

est linéaire et injective de $S_{\mathbb{R}}$ vers \mathbb{R}^4 ; donc

$$0 \leq \dim S_{\mathbb{R}} \leq 4$$

12

On va maintenant améliorer cet encadrement.

2.5.2 Chercher les solutions de (E) développables en série entière.

Rédaction

Supposons qu'il existe une série entière $\sum a_n.x^n$

- de rayon de convergence R non nul,
- et dont la somme f est solution de (E) sur I =]-R, R[.

Alors, on sait que f est de classe C^{∞} sur I, dérivable terme à terme, et que la somme d'une série entière n'est nulle sur I que si les coefficients sont nuls.

Après calculs, on obtient :

Réponse

$$n^2.a_n = -a_{n-2}, a_1 = 0.$$

$$\forall n \ge 0, \ a_{2n} = \frac{(-1)^n}{(2^n \cdot n!)^2} a_0$$

Il est nécessaire de s'assurer que le rayon de convergence de la série obtenue est non nul.

Ici, il est infini:

$$\forall x \in \mathbb{R}, J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2^n \cdot n!)^2} x^{2n}$$

2.5.3 Expression intégrale

Montrer que:

$$\forall x \in \mathbb{R}, J_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \cdot \sin t) dt$$

Démonstration

Fixons $x \in \mathbb{R}$.

$$\forall t \in I = [0, \pi], \cos(x.\sin t) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} (\sin t)^{2n}$$

Pour $n \geq 0$, on étudie

$$I_n = \int_0^\pi \left| \frac{(-1)^n}{(2n)!} x^{2n} \left(\sin t \right)^{2n} dt \right| = \int_0^\pi \frac{1}{(2n)!} x^{2n} \left(\sin t \right)^{2n} dt$$

$$\forall n \ge 0, I_n = \frac{x^{2n}}{(2n)!} \int_0^\pi \left(\sin t \right)^{2n} dt = \frac{x^{2n}}{(2n)!} . w_{2n}$$

On en déduit que

$$\forall n \ge 0, \ 0 \le I_n = \frac{x^{2n}}{(2n)!} \cdot w_{2n} \le \pi \frac{x^{2n}}{(2n)!}$$

d'où la convergence de la série $\sum I_n$.

On applique alors le théorème d'intégration terme à terme...

2.6 Complément : étude en R^-

2.6.1 Exercice 1

Soit $g(x) = \sum_{n=0}^{\infty} b_n x^n$; on suppose R = 1, les b_n positifs, et $\sum b_n$ divergente.

Que montrer?

Réponse

On peut montrer que

$$\lim_1 g = +\infty$$

Démonstration

On sait que g est croissante sur [0,1[; donc g admet une limite L en 1^- , finie ou non.

Supposons que g est bornée, donc L finie. Notons

$$g_n(x) = \sum_{k=0}^{n} b_k x^k$$

 g_n est continue sur [0,1]; sa limite en 1 est

$$L_n = g_n\left(1\right) = \sum_{k=0}^{n} b_k$$

$$\forall n \geq 0, \forall x \in [0, 1[, g_n(x) \leq g(x)]$$

Donc: $\forall n \geq 0, L_n \leq L$.

Conclusion, $\sum b_n$ converge. On a montré la contraposée.

2.6.2 Exercice 2

Soit $g(x) = \sum_{n=0}^{\infty} b_n x^n$; on suppose R = 1, les b_n positifs, et $\sum b_n$ convergente.

Que montrer?

Réponse

On peut montrer que la série converge normalement sur [0,1]. Donc g est continue sur [0,1].

2.6.3 Exercice 3

Soit

$$f(x) = \sum_{n=0}^{\infty} a_n x^n, \ g(x) = \sum_{n=0}^{\infty} b_n x^n$$

On suppose les deux rayons supérieurs ou égaux à 1, les b_n positifs, et $\sum b_n$ divergente.

Montrer que:

- si $a_n = o(b_n)$, alors f = o(g)
- si $a_n \sim b_n$, alors $f \sim g$ au voisinage de 1.

Démonstration

Supposons $a_n = o(b_n)$; fixons $\varepsilon > 0$; soit n_0 tel que:

$$\forall n \ge n_0, |a_n| \le \frac{\varepsilon}{2}.b_n$$

Done

$$\forall x \in [0, 1[, |f(x)| \le \left| \sum_{n=0}^{n_0} a_n x^n \right| + \frac{\varepsilon}{2} g(x)$$

Puis

$$\forall x \in]0,1[,\left|\frac{f\left(x\right)}{g\left(x\right)}\right| \leq \frac{1}{g\left(x\right)}\left|\sum_{n=0}^{n_{0}}a_{n}x^{n}\right| + \frac{\varepsilon}{2}$$

Pour conclure:

$$\exists a \in]0,1[, \forall x \in]a,1[, \left| \frac{f(x)}{g(x)} \right| \leq \varepsilon$$

Application: la continuité radiale

Exercice

Soit $f(x) = \sum_{n=0}^{\infty} a_n x^n$; on suppose que f(1) existe.

Montrer que f est continue sur [0,1].

Remarquons que $R \geq 1$ et que si R > 1, le résultat est évident.

Démonstration

En remplaçant f par f - f(1), on se ramène au cas où f(1) = 0. On notera

$$s_n = \sum_{k=0}^n a_k$$

Dans ce cas, (s_n) tend vers f(1) = 0. Donc $s_n = o(1)$.

Posons

$$\forall x \in]-1, 1[, g(x) = \frac{f(x)}{1-x} = \sum_{k=0}^{\infty} s_k.x^k$$

L'exercice précédent s'applique :

 $s_n = o(1)$, donc $g(x) = o(\sum_{k=0}^{\infty} x^k)$, ce qui signifie exactement :

$$\lim_{1} f = 0$$

f est donc continue sur [0,1].

2.6.5 Un exemple

Soit $a_n = \ln n$.

$$f(x) = \sum_{n=2}^{\infty} \ln n . x^n$$

Montrer que R=1, trouver la limite de f en 1, un équivalent, puis un développement asymptotique de f au voisinage de 1.

Réponse

$$\forall x \in]0,1[,f(x) \ge \ln 2. \sum_{n=2}^{\infty} x^n = \ln 2. \frac{x^2}{1-x}$$

ce qui prouve que f tend vers $+\infty$ en 1^- .

On note $H_n = \sum_{k=1}^n \frac{1}{k}$; soit

$$g\left(x\right) = \sum_{n=1}^{\infty} H_n x^n$$

On reconnaît un produit de Cauchy:

- $a_k = \frac{1}{k}$ pour $k \ge 1$ et $a_0 = 0$. $b_k = 1$.

$$H_n = \sum_{k=0}^{n} a_k . b_{n-k}$$

$$\forall x \in]-1, 1[, g(x) = -\frac{\ln(1-x)}{1-x}]$$

qui est un équivalent de f en 1 d'après l'exercice 2.

Plus précisément

On sait que $a_n = H_n - \gamma + d_n$, où (d_n) tend vers 0 ; d'où

$$\forall x \in]-1, 1[, f(x) = g(x) - \frac{\gamma}{1-x} + h(x)$$

15

avec, toujours d'après l'exercice 2 : $h(x) = o\left(\frac{1}{1-x}\right)$.

On peut continuer

$$a_n = H_n - \gamma - \frac{1}{2n} + o\left(\frac{1}{n}\right)$$
, d'où

$$f(x) = -\frac{\ln(1-x)}{1-x} - \frac{\gamma}{1-x} + \frac{1}{2}\ln(1-x) + o(\ln(1-x))$$

3 Fonctions développables en série entière

3.1 Définitions

3.1.1 Fonction DSE

Soit r > 0; soit I =]-r, r[; soit $f \in C^0(I, \mathbb{C})$.

On dit que f est développable en série entière s'il existe une série entière dont la somme est f.

3.1.2 Série de Taylor

Soit r > 0; soit I =]-r, r[; soit $f \in C^{\infty}(I, \mathbb{C})$; soit

$$a_n = \frac{f^{(n)}(0)}{n!}$$

On appelle série de Taylor de f la série $\sum a_n x^n$.

3.1.3 Théorème

Pour que f soit développable en série entière sur I, il est nécessaire que f soit de classe C^{∞} .

Si f est la somme d'une série entière, cette série entière est la série de Taylor.

3.1.4 Remarques

Il est possible que la série de Taylor possède un rayon de convergence R nul, ou que R < r.

Il est possible que la série de Taylor converge, mais que sa somme g soit différente de f.

Dans le cas où R > 0, que dire de la série de Taylor de g?

Réponse

f et g ont la même série de Taylor ; g est automatiquement développable en série entière.

3.2
$$x \to (1+x)^{\alpha} (\alpha \in \mathbb{C})$$
.

Théorème

$$x \to (1+x)^{\alpha}$$
 est DSE sur $J =]-1, 1[$.

Démonstration

Soit
$$\alpha \in \mathbb{C} \setminus \mathbb{N}$$
; soit $f(x) = (1+x)^{\alpha} = e^{\alpha \ln(1+x)}$.
 f est de classe C^{∞} sur $I =]-1, +\infty[$ et

$$\forall x \in I, \forall n \ge 0, f^{(n)}(x) = \alpha (\alpha - 1) \dots (\alpha - n + 1) (1 + x)^{\alpha - n}$$

$$a_n = \frac{f^{(n)}(0)}{n!} = \frac{\alpha(\alpha - 1)\dots(\alpha - n + 1)}{n!} = H_n(\alpha) = \begin{pmatrix} \alpha \\ n \end{pmatrix}$$

Pour la série de Taylor, montrons que R=1:

Soit $x \in \mathbb{R}^*$ et $u_n = a_n x^n$.

$$\forall n \geq 2, \left| \frac{u_n}{u_{n-1}} \right| = \left| \frac{\alpha - n + 1}{n} \right| . |x|$$

qui tend vers |x|.

Donc $\sum u_n$ diverge si |x| > 1 et converge si |x| < 1.

Dernière étape

Il reste à montrer que f est égale la somme s de la série de Taylor. Pour cela, on montre que f et s sont solutions de

$$\begin{cases} (1+x) y' = \alpha y \\ y(0) = 1 \end{cases}$$

3.3 Exercice: arcsin

Développement en série entière

On utilise le précédent sur J =]-1, 1[avec $\alpha = -\frac{1}{2}$:

$$\frac{1}{\sqrt{1+u}} = \sum_{n=0}^{\infty} a_n u^n$$

avec

$$a_n = (-1)^n \frac{(2n)!}{(2^n \cdot n!)^2}$$

D'où

$$\forall x \in J, \arcsin x = \sum_{n=0}^{\infty} b_n x^{2n+1}$$

avec

$$b_n = \frac{(2n)!}{(2n+1)(2^n \cdot n!)^2}$$

3.3.2Etude aux bornes

Rappel, la formule de Stirling (au programme):

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$

- On peut montrer que $\sum b_n$ converge de plusieurs façons : en calculant un équivalent de b_n : $\frac{C}{n^{\frac{3}{2}}}$ en utilisant la formule de Stirling.
 - en utilisant un exercice antérieur.
 - ou à l'aide de $\frac{b_n}{b_{n-1}}$ avec l'exercice suivant.

3.3.3Exercice

Soit (b_n) une suite de réels strictement positifs telle que

$$\frac{b_n}{b_{n-1}} = 1 - \frac{3}{2n} + O\left(\frac{1}{n^2}\right)$$

Que dire de (b_n) ?

Réponse

Soit α un réel. Soit $(c_n) = (n^{\alpha}b_n)$. On étudie $\frac{c_n}{c_{n-1}}$.

$$\frac{c_n}{c_{n-1}} = \left(1 + \frac{\alpha}{n} + O\left(\frac{1}{n^2}\right)\right) \left(1 - \frac{3}{2n} + O\left(\frac{1}{n^2}\right)\right)$$

On constate que pour $\alpha = \frac{3}{2}$:

$$\frac{c_n}{c_{n-1}} = \left(1 + O\left(\frac{1}{n^2}\right)\right)$$

Donc

$$\ln c_n - \ln c_{n-1} = O\left(\frac{1}{n^2}\right)$$

D'où la convergence de $(\ln c_n)$, d'où la convergence de (c_n) vers une limite strictement positive C, d'où la conclusion :

$$b_n \sim \frac{C}{n^{\alpha}}$$

3.4 C^{∞} mais non DSE

On définit f par

$$f(x) = \exp\left(-\frac{1}{x}\right)$$

si x > 0; on la prolonge au choix en une fonction paire, impaire, ou nulle sur $]-\infty,0].$

On va montrer que f est de classe C^∞ sur $\mathbb R$; quelle est sa série de Taylor ?

1e étape

On montre par récurrence sur n que :

$$\forall n \ge 0, \forall x > 0, f^{(n)}(x) = \frac{P_n(x)}{x^{2n}} \cdot \exp\left(-\frac{1}{x}\right)$$

où P_n est un polynôme. On sait que

$$\lim_{u \to +\infty} u^{2n} \cdot e^{-u} = 0$$

Il en découle que

$$\lim_{x \to 0^+} f^{(n)}\left(x\right) = 0$$

2e étape

On utilise le théorème de classe C^k par prolongement, qui montre que pour tout $k \geq 1$, f est de classe C^k sur \mathbb{R} .

Conclusion

f est de classe C^{∞} sur $\mathbb{R},$ la somme de la série de Taylor de f est nulle, mais f ne l'est pas.

3.5 Les fractions rationnelles

3.5.1 Rappel

Soit $R\left(X\right)=\frac{P(X)}{Q(X)}\in\mathbb{C}\left(X\right)$ une fraction ration nelle ; on supposera

$$P \wedge Q = 1$$

La partie entière E(X) est ?

Réponse

Le quotient de P par Q. On peut écrire

$$R = E + \frac{P_1}{Q}$$

De plus, $\frac{P_1}{Q}$ est combinaison linéaire de termes de la forme

$$\frac{1}{(X-a)^n}$$

où a décrit l'ensemble des racines de Q.

3.5.2 Développement en série entière

Soit $a \in \mathbb{C}$, non nul, et $n \in \mathbb{N}^*$; soit

$$f: z \to \frac{1}{(z-a)^n}$$

f est développable en série entière, de rayon R = |a|.

Démonstration

Facile pour n = 1; ensuite produit de Cauchy.

Autre méthode:

On utilise $(1+u)^{\alpha}$ avec $\alpha = -n$.

Autre méthode:

Dérivation; par exemple,

$$\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} n.x^{n-1}$$

bien plus rapide par dérivation qu'avec $(1+u)^{\alpha}$.

Corollaire

Si 0 n'est pas un pôle de $R, z \to R(z)$ est somme d'une série entière.

D'après le théorème sur le rayon de convergence d'une somme, le rayon de convergence R est au moins r, minimum des modules des pôles de R(X).

3.5.3 Le rayon

Exercice

Le rayon est exactement r, minimum des modules des pôles de R(X).

Démonstration

C'est facile s'il existe un seul pôle ... ?

de module r.

Cas général : il existe au moins un pôle a de module r ; on constate que

$$\lim_{t\rightarrow1^{-}}\left|R\left(ta\right)\right|=\lim_{t\rightarrow1^{-}}\left|\frac{P\left(ta\right)}{Q\left(ta\right)}\right|=+\infty$$

Donc le rayon R ne peut pas dépasser r = |a|.

4 Exercices

4.1 Avec une équation différentielle

Etudier le développement en série entière de

$$f: x \to \sqrt{x + \sqrt{1 + x^2}}$$

19

Réponse

On remarque que f est de classe C^{∞} sur \mathbb{R} et que $f(\sinh u) = e^{\frac{u}{2}}$. D'où f vérifie (E):

$$(1+x^2)y'' + xy' - \frac{1}{4}y = 0$$

Après calculs:

$$\forall n \ge 0, (n+2)(n+1)a_{n+2} = (\frac{1}{4} - n^2)a_n, a_0 = 1, a_1 = \frac{1}{2}; R = 1.$$

Synthèse

D'après le théorème de Cauchy linéaire, $1+x^2$ ne s'annulant pas I=]-1,1[, le problème de Cauchy

$$\left\{ \begin{array}{l} \left(1+x^2\right)y''+xy'-\frac{1}{4}y=0 \\ y\left(0\right)=1,y'\left(0\right)=\frac{1}{2} \end{array} \right.$$

admet une solution unique sur I.

La somme de la série entière touvée est donc f.

4.2 Avec une série double

Etudier le développement en série entière de

$$f: x \to \exp\left(e^x\right)$$

Réponse

Soit x réel ou complexe quelconque.

$$f(x) = \sum_{n=0}^{\infty} \frac{e^{nx}}{n!} = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{p=0}^{\infty} \frac{1}{p!} (nx)^p$$

On va utiliser le théorème de Fubini : on note

$$u_{n,p} = \frac{1}{n!p!} (n.x)^p$$

Ensuite, $v_{n,p} = |u_{n,p}|$; puis

$$S_n = \sum_{p=0}^{\infty} v_{n,p} = \sum_{p=0}^{\infty} \frac{1}{n!p!} |n.x|^p$$

Existence de S_n ?

$$\forall n \geq 0, S_n = \frac{1}{n!} \left(e^{|x|} \right)^n$$

Conclusion?

 S_n est le terme général d'une série convergente, dont la somme est $\exp(e^{|x|})$. Donc le théorème de Fubini s'applique ; finalement

$$\forall x \in \mathbb{R}, \ f(x) = \sum_{p=0}^{\infty} \left(\frac{1}{p!} \sum_{n=0}^{\infty} \frac{n^p}{n!}\right) . x^p$$

4.3 tan est développable en série entière sur $I = \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$

4.3.1 Les dérivées de tan

Pour tout $n \ge 0$, $\tan^{(n)} \ge 0$ sur $J = \left[0, \frac{\pi}{2}\right[$.

Démonstration

$$\tan^{(n)}{(x)} = P_n \, (\tan x),$$
 où P_n vérifie $P_{n+1} = \left(1 + X^2\right) P_n'.$

4.3.2 tan **est DSE sur** $I = \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.

Démonstration

Soit $x \in J$; soit $n \ge 0$; $\tan x = s_n(x) + r_n(x)$, avec

$$s_n(x) = \sum_{k=0}^{n} \frac{\tan^{(k)}(0)}{k!} x^k, \ r_n(x) = \frac{x^{n+1}}{n!} I_n(x)$$

et

$$I_n(x) = \int_0^1 (1-u)^n \tan^{(n+1)}(xu) du$$

Fixons $0 < x < y < \frac{\pi}{2}$; on remarque que $I_n(x) \le I_n(y)$ et $0 \le r_n(y) \le \tan(y)$.

Donc:

$$\forall n \geq 0, \ 0 \leq r_n(x) \leq r_n(y) \cdot \left(\frac{x}{y}\right)^{n+1} \leq \tan y \cdot \left(\frac{x}{y}\right)^{n+1}$$

Conclusion?

4.4
$$\sum_{n=0}^{\infty} e^{-n} \cdot \cos(n^2 x)$$

4.4.1
$$f(x) = \sum_{n=0}^{\infty} e^{-n} \cdot \cos(n^2 x)$$

Montrer que f est bien définie et continue sur \mathbb{R} .

Réponse

$$\forall n \ge 0, \forall x \in \mathbb{R}, |e^{-n}.\cos(n^2x)| \le e^{-n}$$

Majoration indépendante de x par le terme général d'une série numérique convergente.

Donc la série converge normalement sur \mathbb{R} .

Les termes de la série étant continus, la somme est continue.

4.4.2 C^{∞}

Montrer que f est de classe C^{∞} sur \mathbb{R} ; quelle est sa série de Taylor?

4.4.3 DSE ?

Montrer que le rayon de convergence de la série de Taylor de f est nul ; conclusion ?

4.4.4 Réponse

$$\forall p \ge 0, f^{(2p)}(0) = (-1)^p \cdot \sum_{n=0}^{\infty} e^{-n} \cdot (n^2)^{2p}$$

On sait que $\sum a_p.x^p$ et $\sum |a_p|\,x^p$ ont le même rayon de convergence.

Soit x>0. On va montrer que $\sum \frac{\left|f^{(2p)}(0)\right|}{(2p)!}.x^{2p}$ diverge avec le théorème de Fubini :

$$\sum_{p=0}^{\infty} \frac{x^{2p}}{(2p)!} \sum_{n=0}^{\infty} e^{-n} \cdot \left(n^2\right)^{2p} = \sum_{n=0}^{\infty} e^{-n} \cdot \sum_{p=0}^{\infty} \frac{x^{2p}}{(2p)!} \left(n^2\right)^{2p} = \sum_{n=0}^{\infty} e^{-n} \cdot \operatorname{ch}\left(n^2x\right)$$

On obtient une série qui diverge. Donc

$$R = 0$$

4.5
$$\sum_{k=1}^{p} u_k = n$$

Soit $n \in \mathbb{N}$. On cherche le nombre a_n de solutions dans \mathbb{N}^p de

$$\sum_{k=1}^{p} u_k = n$$

4.5.1 Méthode élémentaire

On dispose d'un tableau de taille n + p - 1 dans lequel on range n objets identiques, et p - 1 séparateurs.

Nombre de possibilités :

$$\binom{n+p-1}{n}$$

4.5.2 Avec sommation par paquets

Pour $x \in]-1,1[$, et $(u_1,...,u_p) \in \mathbb{N}^p,$ on note

$$a_{u_1,...,u_p} = x^{u_1 + ... + u_p}$$

et on calcule

$$\sum_{(u_1,\dots,u_p)\in\mathbb{N}^p}^{\infty} x^{u_1+\dots+u_p}$$

en sommant par paquets de deux manières différentes.

$$\forall x \in]-1,1[\,,\,\frac{1}{(1-x)^p} = \sum_{u_1=0}^{\infty} x^{u_1}.\sum_{u_2=0}^{\infty} x^{u_2}...\sum_{u_p=0}^{\infty} x^{u_p}$$

Donc

$$\forall x \in]-1,1[, \frac{1}{(1-x)^p} = \sum_{(u_1,\dots,u_n)\in\mathbb{N}^p}^{\infty} x^{u_1+\dots+u_p} = \sum_{n=0}^{\infty} a_n x^n$$

Or

$$\forall x \in]-1, 1[, \frac{1}{(1-x)^p} = (1-x)^{-p} = \sum_{n=0}^{\infty} b_n x^n$$

avec

$$b_n = \frac{(-p)(-p-1)...(-p-n+1)}{n!}(-1)^n = \binom{n+p-1}{n}$$

5 Compléments

5.1 La continuité radiale

Soit $f(z) = \sum_{n=0}^{\infty} a_n z^n$; on suppose que $f(z_0)$ existe. Alors la série converge uniformément sur

$$K = [0, z_0]$$

et f est continue sur cet intervalle.

On se ramène au cas où $z_0 = 1$.

5.1.1 Un cas particulier simple

Le cas où $\sum a_n$ converge absolument.

Dans ce cas, la série converge normalement sur [0,1]:

$$\forall n \ge 0, \forall x \in [0, 1], |a_n x^n| \le |a_n|$$

Majoration indépendante de x par le terme général d'une série numérique convergente.

Donc la série converge normalement sur [0, 1].

5.1.2 Un autre cas particulier simple

Le cas où

$$a_n = (-1)^n b_n$$

avec (b_n) décroissante de limite nulle.

Dans ce cas, on note

$$R_n(x) = \sum_{k=n+1}^{\infty} (-1)^k .b_k .x^k$$

et on constate que

$$\forall x \in J = [0, 1], |R_n(x)| \le b_{n+1}.x^{n+1} \le b_{n+1}$$

majorant indépendant de x et qui tend vers 0.

5.1.3 Démonstration du cas général

On note

$$r_n = \sum_{k=n+1}^{\infty} a_k$$

$$R_n\left(x\right) = \sum_{k=n+1}^{\infty} a_k x^k$$

Soit $m_n = \sup_{k \ge n} |r_k|$; remarquons que $a_k = r_{k-1} - r_k$ et que (m_n) tend vers 0 (voir plus loin).

Etudions R_n :

$$\forall x \in [0, 1], R_n(x) = \sum_{k=n+1}^{\infty} (r_{k-1} - r_k) x^k = r_n x^{n+1} + \sum_{k=n+1}^{\infty} r_k (x^{k+1} - x^k)$$

Justification? Ensuite, il faut majorer soigneusement; on obtient:

$$\forall x \in [0,1], |R_n(x)| < 2m_n$$

5.1.4 Lemme: lim sup

Soit (u_n) une suite de réels de limite L; soit

$$v_n = \sup_{k \ge n} u_k$$

La suite (v_n) tend aussi vers L.

Démonstration

Soit $\varepsilon > 0$ et n_0 tel que

$$\forall n \geq n_0, L - \varepsilon \leq u_n \leq L + \varepsilon$$

Soit $n \geq n_0$:

$$\forall k \geq n, L - \varepsilon \leq u_k \leq L + \varepsilon$$

Par passage à la borne supérieure :

$$L - \varepsilon < u_n < v_n < L + \varepsilon$$

Remarque

Si (u_n) est seulement bornée, (v_n) est décroissante et converge vers une limite appelée $\limsup u_n$,

et qui est la plus grande des valeurs d'adhérence de (u_n) .

5.2 Fonctions entières bornées sur $\mathbb C$

5.2.1
$$I_p(r) = 2\pi . a_p . r^p$$

Exercice

On note $I = [0, 2\pi]$.

Soit f somme d'une série entière de rayon R > 0:

$$f\left(z\right) = \sum_{n=0}^{\infty} a_n z^n$$

Soit $r \in [0, R[$; soit

$$I_{p}\left(r\right) = \int_{0}^{2\pi} f\left(r.e^{it}\right) e^{-ipt} dt$$

Alors:

$$\forall p \in \mathbb{N}, I_p(r) = 2\pi.a_p.r^p$$

Démonstration

$$\forall n \in \mathbb{N}, \forall t \in I, |a_n r^n e^{int} e^{-ipt}| = |a_n r^n|$$

indépendant de t et terme général d'une série qui converge.

Donc la série converge normalement sur le segment $I=[0,2\pi]$ et on peut permuter série et intégrale :

$$I_p(r) = \int_0^{2\pi} f(r.e^{it}) e^{-ipt} dt = \sum_{n=0}^{\infty} \int_0^{2\pi} a_n r^n e^{int} e^{-ipt} dt$$
$$I_p(r) = \sum_{n=0}^{\infty} a_n r^n \int_0^{2\pi} e^{i(n-p)t} dt$$

Un calcul facile montre que

$$\forall n \in \mathbb{Z} \setminus \{0\}, \int_0^{2\pi} e^{int} dt = 0$$

D'où la conclusion.

5.2.2 Le théorème de Liouville

Exercice

Soit f fonction entière et bornée sur $\mathbb C$; montrer que f est constante ; que dire de cos ?

Démonstration

On note $M = ||f||_{\infty}$. Fixons $p \ge 0$.

$$\forall r > 0, I_p(r) = 2\pi . a_p . r^p$$

De plus :

$$\forall r > 0, |I_p(r)| \le 2\pi.M$$

Donc:

$$\forall r > 0, |a_p| r^p \le M$$

Donc si $p \ge 1$, $a_p = 0$. Conclusion, f est constante.

Les fonctions analytiques

5.3.1**Définition**

Soit U un ouvert de \mathbb{C} ; soit $f:U\to\mathbb{C}$ une fonction.

On dit qu'elle est analytique sur U si, pour tout $b \in U$, la fonction

$$f_b: h \to f(b+h)$$

est développable en série entière sur un voisinage de zéro.

Exemples

- Les fonctions polynomiales sont analytiques sur \mathbb{C} .
- exp est analytique sur \mathbb{C} .
- $z \to \frac{1}{1-z}$ est analytique sur $U = \mathbb{C} \setminus \{1\}$. On va voir que la somme d'une série entière est analytique sur U =
 - La fonction ζ se prolonge en une fonction analytique sur $\mathbb{C} \{1\}$.
- La fonction Γ se prolonge en une fonction analytique sur $\mathbb C$ privé des entiers négatifs.

5.3.2 ζ est analytique sur $]1, +\infty[$

Démonstration

On fixe a > 1. On étudie $\zeta(a + h)$;

$$\forall h > 1 - a, \ \zeta(a + h) = \sum_{n=1}^{\infty} \frac{1}{n^{a+h}} = \sum_{n=1}^{\infty} \frac{1}{n^a} \cdot \sum_{k=0}^{\infty} \frac{(-h)^k}{k!} \cdot (\ln n)^k$$

On souhaite permuter. On pose

$$u_{n,k} = \frac{1}{n^a} \cdot \frac{(-h)^k}{k!} \cdot (\ln n)^k, \ v_{n,k} = |u_{n,k}|$$

On pose

$$s_n = \sum_{k=0}^{\infty} v_{n,k} = \frac{n^{|h|}}{n^a} = \frac{1}{n^{a-|h|}}$$

La série $\sum s_n$ converge si et seulement si |h| < a - 1, et dans ce cas on peut permuter les sommes.

Conclusion:

$$|h| < R = a - 1 \Longrightarrow \zeta(a + h) = \sum_{k=0}^{\infty} a_k h^k$$

avec

$$a_k = \frac{1}{k!} \sum_{n=1}^{\infty} \frac{(-1)^k}{n^a} \cdot (\ln n)^k$$

Bien entendu, on retrouve la série de Taylor de ζ au point a.

La somme d'une série entière est analytique

Soit f la somme d'une série entière sur U = D(0, R). Alors f est analytique sur U.

Démonstration

$$\forall z \in U, f(z) = \sum_{n=0}^{\infty} a_n z^n$$

Fixons $b \in U$; notons r = R - |b|. Soit h tel que |h| < r.

$$f(b+h) = \sum_{n=0}^{\infty} a_n (b+h)^n = \sum_{n=0}^{\infty} a_n \sum_{k=0}^{n} \binom{n}{k} b^{n-k} . h^k$$

Soit

$$s_n = \sum_{k=0}^{n} |a_n.b^{n-k}.h^k| \binom{n}{k} = |a_n| (|b| + |h|)^n$$

 $\sum s_n$ converge, car

$$|b| + |h| < R = R_a = R_{|a|}$$

On peut donc appliquer le théorème de Fubini :

$$f(b+h) = \sum_{k=0}^{\infty} \sum_{n=k}^{\infty} a_n \cdot \binom{n}{k} b^{n-k} \cdot h^k = \sum_{k=0}^{\infty} c_k \cdot z^k$$

avec

$$c_k = \sum_{n=k}^{\infty} a_n \cdot \binom{n}{k} b^{n-k} = \frac{1}{k!} \sum_{n=k}^{\infty} n(n-1)(n-2) \dots (n-k+1) \cdot a_n \cdot b^{n-k}$$

Remarque

Dans le cas où b est réel, on trouve que

$$c_k = \frac{1}{k!} f^{(k)}(b) = \frac{1}{k!} f^{(k)}_b(0)$$

Etait-ce prévisible?

5.4 Les zéros

5.4.1 Un zéro isolé

Soit $f(z) = \sum_{n=0}^{\infty} a_n z^n$ définie sur U = D(0, R); on suppose f(0) = 0. Alors 0 est un zéro isolé, sauf si f est nulle.

Démonstration

Supposons f non nulle. Soit

$$p = \min \left\{ n \in \mathbb{N} / a_n \neq 0 \right\}$$

On peut écrire:

$$\forall z \in U, f(z) = \sum_{n=p}^{\infty} a_n z^n = z^p. \sum_{n=0}^{\infty} a_{n+p} z^n = z^p. g(z)$$

où g est la somme d'une série entière de rayon 1, donc continue en 0, telle que

$$g\left(0\right) = a_{p} \neq 0$$

5.4.2 Généralisation

Soit f analytique sur U ouvert de \mathbb{C} connexe par arcs. Alors les zéros de f sont isolés, sauf si f est nulle.

Démonstration

On montre que l'intérieur de l'ensemble des zéros est ouvert et fermé dans U.

5.5 Inverse, méthode 1

Soit $f(x) = \sum_{n=0}^{\infty} a_n x^n$; on suppose $a_0 = 1$ et $R_a > 0$. On définit (b_n) par $b_0 = 1$, et si $n \ge 1$:

$$b_n = -\sum_{k=0}^{n-1} a_{n-k} b_k$$

Il est nécessaire de vérifier que $R_b > 0$.

On sait qu'il existe C > 0 tel que :

$$\forall n \geq 0, |a_n| \leq C^n$$

D'où

$$\forall n \ge 1, |b_n| \le \sum_{k=0}^{n-1} |b_k| C^{n-k}$$

Notons $d_k = \frac{|b_k|}{C^k}$:

$$\forall n \ge 1, \, d_n \le \sum_{k=0}^{n-1} d_k$$

Notons $s_n = \sum_{k=0}^n d_k$:

$$\forall n \ge 1, \, s_n \le 2.s_{n-1}$$

On obtient enfin:

$$\forall n \ge 1, |b_n| = d_n C^n \le s_{n-1} C^n \le 2^{n-1} C^n$$

Conclusion?

$$R_b \ge \frac{1}{2C}$$

5.6 Un lemme sur le produit

Soit $f(x) = \sum_{n=0}^{\infty} a_n x^n$ et $g(x) = \sum_{n=0}^{\infty} b_n x^n$; soit $R = \min(R_a, R_b)$. On suppose R > 0; soit

$$h(x) = \sum_{n=0}^{\infty} c_n x^n = f(x) g(x)$$

On note :

$$f_1(x) = \sum_{n=0}^{\infty} |a_n| x^n, g_1(x) = \sum_{n=0}^{\infty} |b_n| x^n, h_1(x) = \sum_{n=0}^{\infty} |c_n| x^n$$

Alors, les coefficients de $f_1.g_1$ majorent ceux de h_1 , et

$$\forall x \in [0, R[, 0 \le h_1(x) \le f_1(x) g_1(x)]$$

Démonstration

$$\forall n \in \mathbb{N}, |c_n| = \left| \sum_{k=0}^n a_k . b_{n-k} \right| \le \sum_{k=0}^n |a_k| . |b_{n-k}|$$

Inverse, méthode 2

Soit $f(x) = \sum_{n=0}^{\infty} a_n x^n$; on suppose $a_0 = 1$ et $R_a > 0$; f(x) = 1 - h(x)

$$h\left(x\right) = -\sum_{n=1}^{\infty} a_n x^n$$

$$\frac{1}{f(x)} = \sum_{p=0}^{\infty} (h(x))^p$$

à condition que |h(x)| < 1; $(h(x))^p = \sum_{n=0}^{\infty} c_n(p) x^n$. Donc, si |h(x)| < 1:

$$\frac{1}{f(x)} = \sum_{p=0}^{\infty} \sum_{n=0}^{\infty} c_n(p) x^n$$

Il reste à intervertir...

Posons $h_1(x) = \sum_{n=1}^{\infty} |a_n| x^n$; $(h_1(x))^p = \sum_{n=0}^{\infty} d_n(p) x^n$. Que dire de $d_n(p)$?

$$|c_n(p)| \le d_n(p)$$

Fixons r > 0 tel que $0 < h_1(r) < 1...$

5.8 Généralisation: la composition

Soit $f(x) = \sum_{n=0}^{\infty} a_n x^n$, et $g(x) = \sum_{n=0}^{\infty} b_n x^n$; on suppose $a_0 = 0$, $R_a > 0$,

On veut montrer que $g \circ f$ est développable en série entière au voisinage de zéro.

Démonstration

On pose

$$(f(x))^{p} = \sum_{n=1}^{\infty} c_{n}(p) x^{n}$$

$$f_1(x) = \sum_{n=1}^{\infty} |a_n| x^n, (f_1(x))^p = \sum_{n=1}^{\infty} d_n(p) x^n$$

A nouveau:

$$\forall p \geq 1, \forall n \geq 1, |c_n(p)| \leq d_n(p)$$

Fixons r > 0 tel que $0 < r < R_a$ et $0 < f_1(r) < R_b$. Soit x tel que $|x| \leq r$:

$$g \circ f(x) = \sum_{p=0}^{\infty} b_p \sum_{n=0}^{\infty} c_n(p) x^n$$

On note $u_{n,p}=b_{p}.c_{n}\left(p\right).x^{n}$; $\left|u_{n,p}\right|\leq v_{n,p}=\left|b_{p}\right|.d_{n}\left(p\right).r^{p}$; d'où

$$s_{p} = \sum_{n=0}^{\infty} |u_{n,p}| \le |b_{p}| (f_{1}(r))^{p}$$

D'où $\sum s_p$ converge.

On peut donc intervertir:

$$g \circ f(x) = \sum_{n=0}^{\infty} x^n \sum_{p=0}^{\infty} b_p . c_n(p)$$

28

5.9 Localisation des racines d'un polynôme dans \mathbb{C} .

5.9.1 Intégrale curviligne

Soit $a \in \mathbb{C}$ et $r \geq 0$. Soit C le cercle de centre a et de rayon r. On paramètre C par :

$$\gamma: t \to a + r.e^{it}$$

Soit $f \in C^0(C, \mathbb{C})$. On note

$$\int_{\gamma} f(z) dz = \int_{0}^{2\pi} f \circ \gamma \cdot \gamma' = \int_{0}^{2\pi} f(a + r \cdot e^{it}) ire^{it} dt$$

5.9.2 Un calcul d'intégrale curviligne

Soit $b \in \mathbb{C}$. Calculer

$$\frac{1}{2i\pi} \int_{\gamma} \frac{\mathrm{d}z}{z-b}$$

Réponse

On trouve 1 si |b-a| < r, 0 si |b-a| > r.

Cas où |b-a| < r:

$$\frac{1}{2i\pi} \int_{\gamma} \frac{\mathrm{d}z}{z-b} = \frac{1}{2i\pi} \int_{0}^{2\pi} \frac{ire^{it}}{a+re^{it}-b} \mathrm{d}t = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\mathrm{d}t}{1-\frac{b-a}{r}e^{-it}}$$

Donc

$$\frac{1}{2i\pi} \int_{\gamma} \frac{\mathrm{d}z}{z-b} = \frac{1}{2\pi} \int_{0}^{2\pi} \sum_{n=0}^{\infty} \left(\frac{b-a}{r}\right)^{n} e^{-int} \mathrm{d}t$$

Cas où |b-a|>r:

$$\begin{split} \frac{1}{2i\pi} \int_{\gamma} \frac{\mathrm{d}z}{z-b} &= \frac{1}{2i\pi} \int_{0}^{2\pi} \frac{ire^{it}}{a+re^{it}-b} \mathrm{d}t = \frac{1}{2\pi} \cdot \frac{r}{a-b} \cdot \int_{0}^{2\pi} \frac{e^{it} \mathrm{d}t}{1-\frac{r}{b-a}e^{it}} \\ \frac{1}{2i\pi} \int_{\gamma} \frac{\mathrm{d}z}{z-b} &= \frac{1}{2\pi} \cdot \frac{r}{a-b} \cdot \int_{0}^{2\pi} \sum_{n=0}^{\infty} \left(\frac{r}{b-a}\right)^{n} e^{i(n+1)t} \mathrm{d}t \end{split}$$

5.9.3 Application aux racines des polynômes

Soit $P \in \mathbb{C}[X]$ n'ayant pas de racines sur le cercle γ . Que dire de

$$\frac{1}{2i\pi} \int_{\gamma} \frac{P'(z)}{P(z)} dz$$

C'est le nombre de racines de P dans le disque. On peut en déduire que

- L'ensemble U des polynômes de degré n $(n \ge 1)$, scindés à racines simples, est un ouvert de $\mathbb{C}_n[X]$.
- Si P_0 est dans U, si P est suffisamment proche de P_0 , alors les racines de P sont proches de celles de P_0 .

29