$$M_n\left(\mathbb{Z}\right)$$

1 Ordre dans $GL_2(\mathbb{Z})$

Soit $M\in GL_{2}\left(\mathbb{Z}\right)$ d'ordre fini n. Montrer que $n\in\left\{ 1,2,3,4,6\right\}$ et que ces valeurs sont atteintes.

$2 \quad GL_3(\mathbb{Z})$

Soit $M \in GL_3(\mathbb{Z})$ n'ayant pour valeur propre ni 1 ni -1. Montrer que M est diagonalisable dans $M_3(\mathbb{C})$.

Indications

Si λ est racine de P et de P', λ est racine du reste de la division de P par P'.

3 Ordre dans $GL_n(\mathbb{Z})$

Ici $n \geq 1$ est fixé. Soit

$$E = \left\{ M \in M_n \left(\mathbb{Z} \right) / \exists k \in \mathbb{N}^*, M^k = I_n \right\}$$

Montrer que:

$$\exists q \in \mathbb{N}^*, \, \forall M \in E, \, M^q = I_n$$

Autrement dit, l'ordre des éléments de $GL_n(\mathbb{Z})$ qui sont d'ordre fini est majoré par un entier q qui ne dépend que de n.

4 Partie génératrice de $SL_2(\mathbb{Z})$

On note

$$G = SL_2(\mathbb{Z}) = \{ M \in M_2(\mathbb{Z}) / \det M = 1 \}$$

- 1- G est-il cyclique?
- 2- Montrer que G est engendré par $\{A, B\}$ avec

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

 $\mathbf{5} \quad A^q = I_n$

Soit $A \in M_n(\mathbb{Z})$, diagonalisable, telle que $\operatorname{Sp}(A) \subset \mathbb{U}$. Montrer que

$$\exists q \in \mathbb{N}^*, \, A^q = I_n$$

6 $A^k - I_n$ nilpotente

Soit $A \in M_n(\mathbb{Z}) \cap GL_n(\mathbb{R})$. On suppose que

$$\forall \lambda \in \mathrm{Sp}(A), |\lambda| \leq 1$$

- 1- Montrer que $A \in GL_n(\mathbb{Z})$.
- 2- Montrer l'existence de $k \in \mathbb{N}^*$ tel que $A^k I_n$ soit nilpotente.

Indications

Etudier les χ_{A^k} .

A circulante dans $M_p(\mathbb{Z})$

Soit p premier, $A \in M_p(\mathbb{Z})$ circulante. Montrer que

$$\det A \equiv a_0 + a_1 + \dots + a_{p-1} [p]$$

Indications

Utiliser A^p .

Matrices dans $M_2(\mathbb{Z}/p\mathbb{Z})$

Soit p premier et $K = \mathbb{Z}/p\mathbb{Z}$; donner le nombre de matrices nilpotentes et le nombre de matrices inversibles dans $M_2(K)$.

Indications

1- Nilpotentes. Soit $A = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$; montrer d'abord que M est nilpotente si et seulement si a + d = 0 et ad - bc = 0;

- cas où $a \neq 0$: p-1 choix pour a; d=-a; p-1 choix pour b; c est alors imposé:

$$c = -a^2.b^{-1}$$

Total: $(p-1)^2$.

- cas où a = 0: d = 0; 2p - 1 choix pour (b, c).

Conclusion:

 p^2

2- Inversibles.

(a,b) non nul : p^2-1 possibilités ; (a,b) étant choisi, (c,d) doit être non proportionnel à (a,b): p^2-p choix. Conclusion :

$$\left(p^2-1\right)\left(p^2-p\right)$$

$SL_{2}\left(K\right)$ 9

Soit p premier, et $K = \mathbb{Z}/p\mathbb{Z}$.

- 1- Trouver le cardinal de $SL_2(K)$.
- 2- On admet que pour toute matrice M à coefficients entiers,

$$\operatorname{Tr} M^p \equiv \operatorname{Tr} M[p]$$

Trouver

$$\operatorname{card}\left\{ A\in SL_{2}\left(K\right) /A^{p}=I_{2}\right\}$$

Indications

1- $p\left(p^2-1\right)$. 2- $\chi_A=X^2-2X+1$; on est ramené au nombre de matrices nilpotentes.

10 χ_{A^p}

Soit p premier et $K = \mathbb{Z}/p\mathbb{Z}$.

1- Montrer que pour tout polynôme $P \in K[X]$:

$$P(X^p) = (P(X))^p$$

2- Soit $A \in M_n(K)$ et $B = A^p$. Montrer que

$$\chi_A = \chi_B$$

En particulier : pour toute matrice M à coefficients entiers,

$$\operatorname{Tr} M^p \equiv \operatorname{Tr} M[p]$$

Indications

Utiliser $A^p - X^p I_n = (A - X I_n)^p$.

11 Matrices de passage dans $SL_2(\mathbb{Z})$

Soit $M \in M_2(\mathbb{Z})$ telle que $M^2 = I_2$.

- 1- Que dire de $\det M$, $\operatorname{Tr} M$?
- 2- Que dire de M si $\det M = 1$?

On suppose que $\det M \neq 1$.

3- Montrer l'existence de $P \in SL_2(\mathbb{Z})$ telle que

$$P^{-1}MP = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \text{ ou } \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

4- Montrer que le 'ou' est exclusif.

12 $AB - I_n$ multiple de q

Soit $n, q \ge 1$. Soit $A, B \in M_n(\mathbb{Z})$. On suppose que tous les coefficients de $AB - I_n$ sont multiples de q; montrer qu'il en est de même de $BA - I_n$.

13 Une suite d'entiers

On définit (u_n) par $u_0 = 4$, $u_1 = u_2 = 0$, $u_3 = 3$, et

$$\forall n \in \mathbb{N}, u_{n+4} = u_n + u_{n+1}$$

1- Montrer l'existence de $z_1, ..., z_4$ tels que

$$\forall n \in \mathbb{N}, u_n = \sum_{j=1}^4 z_j^n$$

2- Montrer que si p est premier, p divise u_p .

Indications

$$\operatorname{Tr} M^p \equiv \operatorname{Tr} M[p]$$