Sous-groupes de $GL_n(K)$

1
$$G \cap SL_2(\mathbb{C}) = \{I_2\}$$

Soit G un sous-groupe fini de $GL_2(\mathbb{C})$ tel que $G \cap SL_2(\mathbb{C}) = \{I_2\}$. Montrer que G est cyclique.

2 GL_n et GL_m

Soit K et L deux sous-corps de \mathbb{C} ; soit G un sous-groupe fini de $GL_n(K)$ tel que

$$\forall A \in G, A^2 = I_n$$

- 1) Montrer que G est abélien.
- 2) Montrer que les éléments de G sont diagonalisables.
- 3) Montrer que card $G \leq 2^n$.
- 4) Soit φ un morphisme injectif de $GL_n(K)$ dans $GL_m(L)$; montrer que $n \leq m$.

3 Supplémentaire stable

Soit E un espace vectoriel de dimension finie, et G un sous-groupe fini de GL(E) de cardinal n; pour $f \in L(E)$, on pose

$$\overline{f} = \frac{1}{n} \sum_{g \in G} g \circ f \circ g^{-1}$$

- 1) Montrer que $\forall g \in G, \overline{f}g = g\overline{f}$.
- 2) Montrer que $f = \overline{f}$ si et seulement si f commute avec tout élément de G.

On suppose que F est un sous-espace vectoriel de E stable par tout élément de G; on veut montrer que F possède un supplémentaire stable par tout élément de G.

- 3) Soit p un projecteur d'image F; montrer que $\operatorname{Im}\overline{p}\subset F$.
- 4) Montrer que

$$\forall x \in F, \overline{p}(x) = x$$

- 5) Montrer que \overline{p} est un projecteur d'image F.
- 6) Conclure.
- 7) Construire un contre-exemple dans le cas où G n'est pas fini à l'aide de $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

4 Sur les sous-groupes finis de O(n)

 $F = \mathbb{R}^n$ est muni de la norme euclidienne canonique. On note $E = M_n(\mathbb{R})$.

1- Norme subordonnée : montrer qu'on définit une norme sur E par

$$\|M\|=\sup_{x\in F\backslash\{0\}}\frac{\|Mx\|}{\|x\|}$$

2- Montrer que

$$\forall A, B \in E, ||A.B|| \le ||A|| \cdot ||B||$$

- 3- ||M|| si $M \in O(n)$?
- 4- Soit $\varepsilon > 0$; on dit qu'une partie A de E est ε -séparée si :

$$\forall x \neq y \in A, ||x - y|| \ge \varepsilon$$

Montrer l'existence de m>0 tel que toute partie ε -séparée de $O\left(n\right)$ possède moins de m éléments.

5- Soit G un sous-groupe fini de O(n); soit G' le sous-groupe de G engendré par

$$\{M \in G/ \|M - I_n\| \le \varepsilon\}$$

Montrer que

$$|G| \leq m |G'|$$

5 Partie génératrice de $GL_n(\mathbb{C})$

Soit U un ouvert de $G = GL_n(\mathbb{C})$ contenant $\{I_n\}$ et H le sous-groupe de G engendré par U.

- 1- Montrer que H est ouvert dans G.
- 2- Montrer que H est fermé dans G.
- 3- Conclure.

6 SO(3) est un groupe simple

Soit G un sous-groupe de SO(3), et G_0 la composante CPA de {Id} dans G.

- 1- Montrer que G_0 est un sous-groupe de G.
- 2- Montrer que si $G \triangleleft SO(3)$, alors $G_0 \triangleleft SO(3)$.
- 3- On suppose $G \triangleleft SO(3)$, G CPA, $G \neq \{Id\}$. Montrer que G contient une rotation d'angle π , puis montrer que G = SO(3).
 - 4- On suppose $G \triangleleft SO(3)$; montrer que G = SO(3) ou $G = \{Id\}$.

7 Un théorème de Burnside sur l'exposant

Soit G un sous-groupe de $GL_n(\mathbb{C})$; soit $q \in \mathbb{N}^*$; on suppose que

$$\forall g \in G, g^q = I_n$$

- 1. Montrer que tous les éléments de G sont diagonalisables.
- 2. Soit $g \in G$; montrer que si $\operatorname{tr} g = n$, alors $g = I_n$.
- 3. Montrer que l'ensemble T des traces des éléments de G est fini.
- 4. Soit g et g' deux éléments de G; on suppose que :

$$\forall x \in G, \operatorname{tr}(q.x) = \operatorname{tr}(q'.x)$$

montrer que g = g'.

5. Montrer que G est fini.

Indications

- 1. $X^q 1$ est scindé à racines simples.
- 2. Notons $\lambda_i = a_i + i \cdot b_i$ les *n* valeurs propres de *g*. Alors :

$$\sum_{j=1}^{n} a_j = n$$

Or : $\forall j, a_j \leq 1$. Donc : $\forall j, a_j = 1$. On en déduit que $g = I_n$.

- 3. Ce sont des sommes de n éléments de \mathbb{U}_q .
- 4. Choisir $x = g^{-1}$.
- 5. Soit F le sous-espace vectoriel de $M_n\left(\mathbb{C}\right)$ engendré par G; soit B une base de F constituée d'éléments de G; soit

$$\begin{array}{ccc} t: & G & \to & T^B \\ & g & \to & (\operatorname{tr} gx)_{x \in B} \end{array}$$

D'après 4., t est injective ; T^B étant fini, G est fini.

$$8 \quad \|MX - X\|_2 \le C \|X\|_2$$

Soit G un sous-groupe de $GL_{n}\left(\mathbb{C}\right)$; on suppose l'existence d'une constante

$$C \in [0, 2[$$

telle que

$$\forall M \in G, \forall X \in \mathbb{C}^n, \, \left\| MX - X \right\|_2 \leq C \, \|X\|_2$$

Montrer l'existence de $m\in\mathbb{N}^*$ tel que

$$\forall M \in G, M^m = I_n$$

Indications

- Montrer que les valeurs propres sont de module 1. Revoir la caractérisation de $\left(M^k\right)_{k\geq 0}$ bornée.

9 Centralisateur dans $GL_n(K)$

Soit X une partie de $GL_{n}\left(K\right)$ et G son centralisateur. Montrer l'existence de $X_{0}\subset X$, fini, dont le centralisateur est G.