Exponentielle

1 Exponentielle dans $M_2(\mathbb{C})$

Soit

$$M = \left[\begin{array}{cc} a & c \\ 0 & b \end{array} \right]$$

Calculer $\exp(M)$.

Indications

Plusieurs méthodes :

- diagonaliser M (si $a \neq b$)
- résoudre X' = M.X
- chercher $P \in \mathbb{C}_1\left[X\right]$ tel que $P\left(M\right) = \exp\left(M\right)$
- calculer M^k pour $k \in \mathbb{N}$

Réponse

Si $a \neq b$

$$\exp\left(M\right) = \left[\begin{array}{cc} e^{a} & \frac{e^{b} - e^{a}}{b - a}.c \\ 0 & e^{b} \end{array} \right]$$

sinon

$$\exp\left(M\right) = \left[\begin{array}{cc} e^{a} & e^{a}.c \\ 0 & e^{a} \end{array} \right]$$

2 $e^A = P(A)$, cas particuliers

Soit $A \in M_n(\mathbb{C})$; trouver $P \in \mathbb{C}[X]$ tel que $P(A) = \exp(A)$

- 1- dans le cas où $A^3 = A^2$
- 2- dans le cas où $(A I_n)^2 (A 2I_n) = 0$

Réponse

1- $P = 1 + X + (e - 2) X^2$ (calcul direct).

2- Cas particulier : $A = I_n + N$ avec $N^2 = 0$; d'après la formule de Taylor :

$$P(A) = P(I_n + N) = P(1)I_n + P'(1)N$$

on cherche P tel que P(1) = e, P'(1) = e.

Cas général : on cherche P tel que

$$P(2) = e^2$$
, $P(1) = e$, $P'(1) = e$

$$3 \quad e^u = P\left(u\right)$$

Soit E un \mathbb{C} -espace vectoriel de dimension finie.

Soit $u \in L(E)$. Montrer que

$$\{P \in \mathbb{C}[X] / P(u) = e^u\}$$

est non vide et contient un unique polynôme de degré minimal.

$$4 \quad \left(e^{\frac{A}{k}}.e^{\frac{B}{k}}\right)^k$$

On note $E = M_n(\mathbb{R})$.

Pour G, sous-groupe de $GL_n(\mathbb{R})$ fermé dans E, on note

$$E_G = \{ X \in E / \, \forall t \in \mathbb{R}, \, e^{tX} \in G \}$$

- 1- Déterminer E_G pour $G = O_n(\mathbb{R})$.
- 2- Montrer que pour une norme subordonnée :

$$\forall A, H \in E, \ \left\| (A+H)^k - A^k \right\| \le (\|A\| + \|H\|)^k - \|A\|^k$$

3- Montrer que

$$\forall A,B \in E, \, \lim_k \, \left(e^{\frac{A}{k}}.e^{\frac{B}{k}}\right)^k = e^{A+B}$$

4- Montrer que E_G est un sous-espace vectoriel de E.

Indications

- 1- ${\cal E}_G$ est l'ensemble des matrices antisymétriques.
- 2- On peut procéder par récurrence sur n.

5 Coefficients non diagonaux positifs

- 1- Soit $A \in M_n(\mathbb{R})$. Montrer l'équivalence entre
- Tous les coefficients non diagonaux de A sont positifs.
- Pour tout $t \geq 0$, les coefficients de $\exp(tA)$ sont positifs.
- 2- On suppose cette condition vérifiée; soit X solution de

$$X'(t) = A.X(t) + B(t)$$

avec B continue sur un intervalle I, à coefficients positifs, et X(0) également à coefficients positifs.

Montrer que pour tout $t \geq 0$, les coefficients de X(t) sont positifs.

Indications

1- Soit B une matrice quelconque ; pour simplifier, on note $B \ge 0$ si tous les coefficients de B sont positifs ; il est clair que si $B \ge 0$, alors $\exp(B) \ge 0$.

Donc, si $A \ge 0$ et $t \ge 0$, alors $\exp(tA) \ge 0$.

Supposons maintenant que tous les coefficients non diagonaux de A sont positifs.

On peut trouver un réel $t \ge 0$ tel que

$$B = A + t I_n > 0$$

Alors:

$$\exp\left(A\right) = e^{-t}.\exp\left(B\right) \ge 0$$

car B et $t.I_n$ commutent.

Réciproque

On suppose que $\exp(tA) \ge 0$ pour tout $t \ge 0$.

$$\frac{\exp\left(tA\right) - I_n}{t}$$

a pour limite A quand t tend vers 0, donc, par passage à la limite, les coefficients non diagonaux de A sont positifs.

2- On applique la méthode de variation de la constante :

$$X\left(t\right) = \exp\left(tA\right).X\left(0\right) + \int_{0}^{t} e^{(t-s)A}B\left(s\right)ds$$

Donc $X(t) \ge 0$ si $t \ge 0$.

6 Solutions de signe positif

Soit $I = \mathbb{R}+$.

1- Soit
$$A \in M_n(\mathbb{R}+)$$
; soit (E) l'équation

$$X'\left(t\right) = A.X\left(t\right)$$

Soit $X \in C^{1}(I, \mathbb{R}^{n})$ une solution de (E) telle que $X(0) \geq 0$. Montrer que

$$\forall t \geq 0, X(t) \geq 0$$

2- Soit $a_0,...,a_{n-1}$ des réels positifs. Soit y une solution sur I de

$$y^{(n)} = \sum_{k=0}^{n-1} a_k . y^{(k)}$$

On suppose que : $\forall k \in \left[\!\left[0,n-1\right]\!\right],\,y^{(k)}\left(0\right) \geq 0.$

Montrer que y est C^{∞} sur I et

$$\forall t \in I, \forall k \in \mathbb{N}, y^{(k)}(t) \ge 0$$

Indications

1- $\forall t \geq 0$, $\exp(tA) \geq 0$.

2- Utiliser le système associé et la question 1.

7
$$e^{zA}.B.e^{-zA}$$

Soit A et B éléments de $M_n(\mathbb{C})$; on suppose que

$$z \to e^{zA}.B.e^{-zA}$$

est bornée sur \mathbb{C} .

Montrer que AB = BA.

Indications

Utiliser un théorème hors-programme sur les séries entières.

8
$$X' = AX + Bu$$

Soit T > 0. Soit $A \in M_n(\mathbb{R})$ et $B \in M_{n,p}(\mathbb{R})$. Soit C la matrice par blocs

$$C = \begin{bmatrix} B, AB, ..., A^{n-1}B \end{bmatrix}$$

Montrer l'équivalence entre

1- C est de rang n.

2- Pour tout $V \in \mathbb{R}^n$, il existe $u \in C^0([0,T],\mathbb{R}^p)$ et $X \in C^1([0,T],\mathbb{R}^n)$ telles que

$$\left\{ \begin{array}{l} X'\left(t\right) = AX\left(t\right) + Bu\left(t\right) \\ X\left(0\right) = 0,\, X\left(T\right) = V \end{array} \right.$$