Normes

1
$$\sup_{[0,1]} |P - P'|$$

Pour tout $P \in E = \mathbb{R}\left[\mathbb{X}\right]$, on note $\|P\|_{\infty} = \sup_{[0,1]} |P|$ et $\|P\| = \sup_{[0,1]} |P - P'|$.

- 1. Montrer qu'on définit ainsi deux normes sur E.
- 2. Les comparer.

Réponse

Soit

$$P_n = \sum_{k=0}^n \frac{X^k}{k!}$$

On constate que $\|P_n\|_{\infty} \sim e$ et $\|P_n\| = \frac{1}{n!}$. De même, soit

$$Q_n = X^n$$

On constate que $\|Q_n\|_{\infty} = 1$ et pour $n \ge 2$, $\|Q_n\| = n - 1$.

$$2 \quad \sup_{n \in \mathbb{N}} |u_{n+1} - u_n|$$

On note $E=l^{\infty}$ l'ensemble des suites de réels bornées ; soit

$$F = \{u \in E / u_0 = 0\}$$

Pour $u \in E$, on note $||u||_{\infty} = \sup_{n \in \mathbb{N}} |u_n|$.

Pour $u \in F$, on note $||u|| = \sup_{n \in \mathbb{N}} |u_{n+1} - u_n|$.

- 1. Montrer que $\| \|_{\infty}$ est une norme sur E.
- 2. Montrer que $\| \|$ est une norme sur F.
- 3. Comparer ces deux normes sur F.

Réponse

Il est clair que sur F:

$$\|\| \le 2. \|\|_{\infty}$$

Fixons $n \ge 1$ et définissons $u \in F$ par

- $u_k = k \text{ si } 0 \le k \le n$
- $u_k = n \text{ si } n \leq k$

On constate que $||u||_{\infty} = n$ et ||u|| = 1; les deux normes ne sont donc pas équivalentes.

$$||M^2|| = ||M||^2$$

1- Existe-t-il une norme sur $E = C^0([0,1],\mathbb{R})$ telle que

$$\forall f \in E, \left\|f^2\right\| = \left\|f\right\|^2$$

2- Existe-t-il une norme sur $E = C^0([0,1],\mathbb{R})$ telle que

$$\forall f, g \in E, ||f.g|| = ||f|| \cdot ||g||$$

3- Existe-t-il une norme sur $E = M_n(\mathbb{R})$ telle que

$$\forall M \in E, ||M^2|| = ||M||^2$$

4- Existe-t-il une norme sur $E = S_n(\mathbb{R})$ telle que

$$\forall M \in E, ||M^2|| = ||M||^2$$

5- Soit X un ensemble fini. Chercher les normes $\| \|$ sur $E = \mathbb{R}^X$ telles que :

$$\forall f \in E, \, \left\| f^2 \right\| = \left\| f \right\|^2$$

Indications

- 1- Oui.
- 2- Non.
- 3- Non si $n \geq 2$. Penser aux matrices nilpotentes.
- 4- Oui, le rayon spectral qui coïncide sur $S_n(\mathbb{R})$ avec la norme subordonnée à la norme euclidienne canonique.
- 5- Il n'y en a qu'une.

4
$$||u|| = ||f.u||_{\infty}$$

Soit I=[a,b] un segment infini et $E=C\left(I,\mathbb{R}\right)$; soit f un élément de E.

Pour $u \in E$, on pose

$$||u|| = ||f.u||_{\infty}$$

- 1- A quelle condition $\| \|$ est-elle une norme sur E?
- 2- A quelle condition $\|\|$ est-elle une norme sur E équivalente à $\|\|_{\infty}$?

Indications

1- Soit

$$Z = \{t \in I/f(t) = 0\}$$

 $\|\|$ est une norme sur E si et seulement si Z est d'intérieur vide, autrement dit ne contient aucun intervalle non trivial. 2- $\|\|$ est une norme sur E équivalente à $\|\|_{\infty}$ si et seulement si Z est vide.

5 La boule caractérise la norme

Soit E un \mathbb{R} —espace vectoriel et N_1 et N_2 deux normes sur E. Soit

$$B_1 = \{x \in E / N_1(x) < 1\}, B_2 = \{x \in E / N_2(x) < 1\}$$

On suppose $B_1 = B_2$; montrer que $N_1 = N_2$.

Indications

Soit x élément non nul de E ; soit $y=\frac{x}{N_1(x)}.$ $y\notin B_1$, donc $y\notin B_2$. Donc

$$N_2\left(\frac{x}{N_1(x)}\right) \ge 1$$

AQT...

6 Si la boule est convexe

Soit E un \mathbb{R} -espace vectoriel et

$$N = \|\|: E \to \mathbb{R} +$$

une application qui vérifie :

$$\forall \in E \setminus \{0\}, N(x) > 0$$

$$\forall x \in E, \forall \lambda \in \mathbb{R}, N(\lambda x) = |\lambda| N(x)$$

On suppose de plus que la boule

$$B = \{x \in E/N(x) \le 1\}$$

est convexe.

Montrer que N est une norme.

Indications

Soit x et y deux éléments non nuls de E.

Soit

$$x_1 = \frac{x}{N(x)}, y_1 = \frac{y}{N(y)}$$

On vérifie que x_1 et y_1 sont dans B et on remarque que

$$\frac{x+y}{N\left(x\right)+N\left(y\right)}=\frac{N\left(x\right)}{N\left(x\right)+N\left(y\right)}x_{1}+\frac{N\left(y\right)}{N\left(x\right)+N\left(y\right)}y_{1}$$

donc appartient à B.

Isométries de $(\mathbb{R}^n, |||_{\infty})$

On appelle isométrie toute application linéaire bijective de $(\mathbb{R}^n, \|\|_{\infty})$ dans lui-même qui conserve la norme. Trouver le nombre d'isométries.

Indications

On note $(e_1, e_2, ...e_n)$ la base canonique de \mathbb{R}^n . Utiliser les $e_i \pm e_j$. Il v en a $2^n.n!$

(X^n) tend vers n'importe quoi

Soit P un élément de $E = \mathbb{R}[X]$; soit d son degré.

- 1- On pose $Q_k = X^k$ si $k \le d$ et $Q_k = X^k P$ si k > d. Montrer que $(Q_k)_{k \ge 0}$ est une base de E. 2- Pour $Q = \sum_{k \ge 0} a_k Q_k$, on pose

$$||Q|| = \max\left\{\frac{|a_k|}{2^k}/k \ge 0\right\}$$

Montrer qu'on définit ainsi une norme sur E.

3- Etudier la convergence de (X^n) pour cette norme.