Matrices symétriques

Inverse 1

Soit $A \in GL_n(\mathbb{R})$; montrer que $\left(A^T\right)^{-1} = \left(A^{-1}\right)^T$. Que dire dans le cas d'une matrice symétrique ou antisymétrique inversible?

Indications

 $A.A^{-1} = I_n$, donc en transposant : $(A^{-1})^T.A^T = I_n$, donc

$$(A^T)^{-1} = (A^{-1})^T$$

Si A est symétrique inversible, A^{-1} aussi. Si A est antisymétrique inversible, A^{-1} aussi.

$A.A^T.A = I_n$

Que dire de $A \in M_n(\mathbb{R})$ telle que $A.A^T.A = I_n$?

Indications

 $A.A^T = A^{-1}$ et $A.A^T$ est symétrique ; donc A est symétrique ; donc

$$A^3 = I_n$$

Ensuite, A étant symétrique est diagonalisable, et toute valeur propre λ de A vérifie $\lambda^3=1$. Conclusion:

$$A = I_n$$

$t:A\to A^T$ 3

Soit $E = M_n(\mathbb{R})$ et $t: A \to A^T$ défini sur E.

- 1- Montrer que t est un endomorphisme symétrique pour le produit scalaire canonique.
- 2- Quels sont ses éléments propres?
- $3-\det(t)$?

Indications

$$E_1(t) = S_n(\mathbb{R}), E_{-1}(t) = A_n(\mathbb{R})$$

$$\det(t) = (-1)^p$$
, où $p = \dim A_n(\mathbb{R}) = \frac{n(n-1)}{2}$.

$\operatorname{Ker} A^T.A$

Soit $A \in M_{p,q}(\mathbb{R})$.

- 1- Montrer que $Ker A = Ker A^T . A$.
- 2- Que dire du rang de $A^T.A$?
- 3- Que dire de $\operatorname{Im} A^T . A$?

Indications

1- Soit $X \in \operatorname{Ker} A^T.A$; alors $A^T.A.X = 0$, donc

$$X^T.A^T.A.X = 0$$

donc

$$\left(AX\right)^{T}.AX = 0$$

Soit Y = AX:

$$Y^T.Y = 0 = \sum_{j=1}^{p} y_j^2$$

Donc Y = 0, donc $X \in \operatorname{Ker} A$.

2- Avec le théorème du rang :

$$\operatorname{rg} A^T A = q - \dim (\operatorname{Ker} A^T A) = q - \dim (\operatorname{Ker} A^T A) = \operatorname{rg} A$$

3- Attention, A et $A^T.A$ n'ont pas la même image, par contre

$$\operatorname{Im} A^T . A = \operatorname{Im} A^T$$

5 $(\operatorname{Ker} A)^{\perp}$

Soit $A \in M_{p,q}(\mathbb{R})$.

- 1- Montrer que $\operatorname{Im} A^T = (\operatorname{Ker} A)^{\perp}$ et $\operatorname{Ker} A^T = (\operatorname{Im} A)^{\perp}$.
- 2- Soit $y \in \mathbb{R}^p$ et f définie sur \mathbb{R}^q par

$$f(x) = \|y - Ax\|_2$$

Montrer que f atteint un minimum en un point x_0 ; x_0 est-il unique?

3- Montrer que x est un minimum de f si et seulement si

$$A^T.A.x = A^Ty$$

Indications

Soit $X \in \mathbb{R}^p$.

$$X \in \operatorname{Ker} A^T \iff A^T X = 0$$

 $\iff \forall Y \in \mathbb{R}^q, \ Y^T.A^T.X = 0$
 $\iff \forall Y \in \mathbb{R}^q, \ X^T.A.Y = 0$
 $\iff X \in (\operatorname{Im} A)^{\perp}$

6 Symétrique et nilpotente

Soit $A \in M_n(\mathbb{R})$ nilpotente.

- 1- Que dire de A si elle est de plus symétrique?
- 2- Que dire de A si elle est de plus antisymétrique ?

Indications

$$1 - A = 0.$$

2-
$$B = A^T . A = -A^2$$
 est symétrique et nilpotente, donc $B = 0$, puis $A = 0$.

7 Sur des intersections

Soit n un entier, $n \geq 2$.

1- Soit a > 0. Soit $A \in M_n(\mathbb{R})$ telle que

- $a_{i,j} = a \text{ si } i \neq j$
- $-a_{i,i} > a \text{ si } i \ge 2$
- $-a_{1,1} \geq a$

Soit $X \in \operatorname{Ker} A$. En étudiant le signe des coordonnées de X, montrer que

$$X = 0$$

2- Soit $E = \{e_1, ..., e_n\}$ un ensemble à n éléments ; soit $a \in \mathbb{N}^*$; soit $F_1, ..., F_m$ m parties de E distinctes telles que pour $i \neq j$:

$$\operatorname{card}\left(F_{i}\cap F_{i}\right)=a$$

Montrer que $m \leq n$. On pourra utiliser la matrice B définie par $b_{i,j} = 1$ si $e_i \in F_j$, 0 sinon.

Indications

1- Notons

$$s = \sum_{j=1}^{n} x_j$$

et $\alpha_i = a_{j,j}$ les coefficients diagonaux de A.

AX = 0, donc:

$$\forall k, a.s + (\alpha_k - a) x_k = 0$$

1er cas : $\alpha_1 = a$

Alors s = 0, donc $x_k = 0$ pour tout $k \ge 2$, finalement

$$X = 0$$

2e cas : $\alpha_1 > a$

Alors

$$\forall k, \, x_k = -\frac{a.s}{\alpha_k - a}$$

donc tous les x_k sont de même signe. Et s est du même signe. On a une somme de termes de même signe qui vaut 0,

$$X = 0$$

2- Soit

$$A = B^T.B$$

A vérifie les hypothèses de la question 1. En effet un seul des F_j peut être de cardinal a, on peut supposer que c'est F_1 .

Donc A est inversible :

$$\operatorname{rg} A = m$$

Donc

$$m = \operatorname{rg} B^T.B \leq \operatorname{rg} B \leq n$$

car B possède n lignes, donc

$$m \leq n$$

8 Symétriques positifs

Soit E un espace euclidien.

1- Soit u un endomorphisme symétrique. Montrer que

$$\operatorname{Sp}(u) \subset \mathbb{R}^{+} \Longleftrightarrow \forall x \in E, \langle u(x), x \rangle \geq 0$$

2- Montrer que tout projecteur orthogonal est symétrique positif.

Indications

1- Soit $(e_1, e_2, ...e_n)$ une base orthonormale de vecteurs propres. Soit

$$x = \sum_{j=1}^{n} x_j . e_j$$

Alors:

$$\langle u(x), x \rangle = \sum_{j=1}^{n} \lambda_{j}.x_{j}^{2}$$

et pour $x = e_i$:

$$\langle u(x), x \rangle = \lambda_i$$

9 Somme de deux projecteurs orthogonaux

Soit E un espace euclidien, p et q deux projecteurs orthogonaux. Soit

$$u = p + q$$

- 1- Montrer que χ_u est scindé dans $\mathbb{R}[X]$.
- 2- Montrer que $Sp(u) \subset [0,2]$.
- 3- Déterminer Ker(u) et Ker(u-2Id).

Indications

1- u est symétrique.

2-

$$\forall x \in E, \langle u(x), x \rangle = \langle p(x), x \rangle + \langle q(x), x \rangle \ge 0$$

Donc u est symétrique positif.

De même,

$$2\mathrm{Id} - u = (\mathrm{Id} - p) + (\mathrm{Id} - q)$$

est positif.

3-

$$\operatorname{Ker}(u) = \operatorname{Ker}(p) \cap \operatorname{Ker}(q)$$

10 Peut-on rendre un endomorphisme symétrique?

Soit E un espace vectoriel réel de dimension finie ; soit $u \in L(E)$; existe-t-il un produit scalaire sur E pour lequel u est symétrique ?

Indications

Non si u n'est pas diagonalisable.

Si u est diagonalisable, soit $B=(e_1,...,e_n)$ une base de vecteurs propres ; on construit un produit scalaire pour lequel B est orthonormale :

pour
$$x = \sum_{j=1}^{n} x_j e_j$$
 et $y = \sum_{j=1}^{n} y_j e_j$, on pose

$$\langle x, y \rangle = \sum_{j=1}^{n} x_j y_j$$

Pour ce produit scalaire, u est symétrique.

11
$$f(x) = \sum_{k=1}^{n} \langle e_k, x \rangle e_k$$

Soit E espace euclidien ; soit $B = (e_1, e_2, ...e_n)$ une base de E. On définit f par

$$f(x) = \sum_{k=1}^{n} \langle e_k, x \rangle e_k$$

- 1- Montrer que f est un endomorphisme symétrique sont les valeurs propres sont strictement positives.
 - 2- Montrer l'existence de g symétrique tel que $g^2=f^{-1}$.
 - 3- Que dire de $(g(e_1), g(e_2), ...g(e_n))$?

Indications

1- On vérifie que f est un endomorphisme et que

$$\forall x, y \in E, \langle f(x), y \rangle = \sum_{k=1}^{n} \langle e_k, x \rangle \langle e_k, y \rangle = \langle x, f(y) \rangle$$

Si x est un vecteur propre :

$$\lambda \langle x, x \rangle = \langle f(x), x \rangle = \sum_{k=1}^{n} \langle e_k, x \rangle^2 > 0$$

Donc $\lambda > 0$.

- $2-f^{-1}$ est également symétrique défini positif et admet une racine carrée (voir cours).
- 3- Notons $a_i = f^{-1}(e_i)$; pour tous i, j:

$$\langle g(e_i), g(e_j) \rangle = \langle g^2(e_i), e_j \rangle = \langle f^{-1}(e_i), e_j \rangle = \langle a_i, e_j \rangle$$

Or

$$e_i = f(a_i) = \sum_{k=1}^{n} \langle e_k, a_i \rangle e_k$$

Donc $\forall k, \langle e_k, a_i \rangle = \delta_{i,k}$; conclusion, $(g(e_1), g(e_2), ...g(e_n))$ est une base orthonormale.

$$12 \quad X + X^T = \operatorname{tr}(X) A$$

Soit $A \in M_n(K) = E$; trouver l'ensemble S des solutions dans E de :

$$X + X^T = \operatorname{tr}(X) A$$

Indications

On cherche X sous la forme X=Y+Z avec Y symétrique et Z antisymétrique. 1er cas : A est symétrique et ${\rm tr} A=2$

$$S = A_n(K) + K.A$$

2e cas:

$$S = A_n(K)$$

13
$$\lambda \leq a \leq \mu$$

Soit $A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$ symétrique réelle, de valeurs propres $\lambda \leq \mu$. Montrer que

$$\lambda \le a \le \mu$$

Indications

Examiner $\chi_A(a)$.

14 Matrices symétriques définies positives

1 Soit $A \in M_n(\mathbb{R})$. Montrer l'équivalence entre :

1-
$$A \in S_n(\mathbb{R})$$
 et : $\forall X \in M_{n,1}(\mathbb{R}) \setminus \{0\}$, $X^T.A.X > 0$
2- $A \in S_n(\mathbb{R})$ et $\operatorname{Sp} A \subset]0, +\infty[$.
3- $\exists P \in GL_n(\mathbb{R})$, $A = P^T.P$

2 Caractérisation par les mineurs principaux

Soit $A \in S_n(\mathbb{R})$. Montrer que A est symétrique définie positive si et seulement si les n mineurs principaux $D_1, ..., D_n$ sont strictement positifs.

- 3 Montrer que S_n^{++} est ouvert dans $S_n(\mathbb{R})$. L'est-il dans $M_n(\mathbb{R})$?
- 4 Montrer que S_n^+ est fermé dans $S_n(\mathbb{R})$.

Indications

Une remarque utile

Soit $X = (x_1, ..., x_k, 0, ..., 0)^T$ et $Y = (x_1, ..., x_k)^T$. Alors:

$$X^{T}.A.X = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} x_{i} x_{j} = \sum_{i=1}^{k} \sum_{j=1}^{k} a_{i,j} x_{i} x_{j} = Y^{T}.A_{k}.Y$$

2 Indications pour la réciproque

On note $(c_1,...,c_n)$ la base canonique de \mathbb{R}^n . Démonstration par récurrence sur n.

 $D_n > 0$, donc le nombre de valeurs propres strictement négatives est pair. S'il y en a au moins deux, on construit un plan P tel que

$$\forall X \in P \setminus \{0\}, X^T A X < 0$$

Par ailleurs, soit $H = \text{Vect}(c_1, ..., c_{n-1})$; d'après l'hypothèse de récurrence :

$$\forall X \in H \setminus \{0\}, X^T A X > 0$$

3

1e méthode : on utilise la question 2. 2e méthode : on utilise la continuité de

$$X \to X^T.A.X$$

sur S(0,1) compact.

4

Beaucoup plus facile.

$$f_X:A\to X^T.A.X$$

est continue ; on en déduit que S_n^+ est une intersection de fermés dans $S_n(\mathbb{R})$.

15
$$X^T.A.X = 0$$

Soit $A \in S_n(\mathbb{R})$ telle que

$$\forall X \in M_{n,1}\left(\mathbb{R}\right), X^T.A.X = 0$$

6

Que dire de A? Et si A n'est pas symétrique?

Indications

Soit λ une valeur propre de A et X un vecteur propre associé.

$$0 = X^T A X = \lambda X^T X$$

Or, $X^T.X > 0$, donc $\lambda = 0$. A est diagonalisable, avec 0 pour seule valeur propre, donc

$$A = 0$$

Dans le cas général, on montre que $B=A+A^T=0$; donc A est antisymétrique.

16 $\det(A+B) \ge \det A + \det B$

Soit $A, B \in S_n^{++}(\mathbb{R})$.

- 1- Montrer que $\forall P \in GL_n(\mathbb{R}), P^T.A.P \in S_n^{++}$.
- 2- Montrer que $\det(A + I_n) \ge \det A + 1$.
- 3- Montrer que $\det(A+B) \ge \det A + \det B$.
- 4- Généraliser au cas où $A, B \in S_n^+(\mathbb{R})$.

Indications

2- $A = P^T.D.P$ avec $P \in O(n)$.

$$\det(A + I_n) = \det[P^T(D + I_n)P] = \det(D + I_n) = \prod_{j=1}^n (\lambda_j + 1) \ge 1 + \prod_{j=1}^n \lambda_j = 1 + \det A$$

3- Soit $C \in S_n^{++}$ telle que $B = C^2$. On peut écrire A sous la forme A = C.A'.C, avec $A' = C^{-1}.A.C^{-1}$. D'où

$$A + B = C (A' + I_n) C = C^T (A' + I_n) C$$

D'après 1 et 2, $\det(A' + I_n) \ge \det A' + 1$, donc :

$$\det(A+B) = (\det C)^2 \det(A'+I_n) \ge (\det C)^2 (\det A'+1) = \det A + \det B$$

4- Si l'une des deux est dans S_n^{++} , la démonstration précédente s'applique ; et si les deux sont de déterminant nul, le résultat est clair.

17 Spectre contenu dans I

Soit I un intervalle.

1- Soit $A \in S_n(\mathbb{R})$ de valeurs propres $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$. Montrer que

$$\lambda_{1} = \max \left\{ \frac{X^{T}.A.X}{X^{T}.X} / X \in M_{n,1}\left(\mathbb{R}\right) \setminus \{0\} \right\}$$

2- Montrer que l'ensemble $S_n(I)$ des matrices symétriques dont le spectre est contenu dans I est convexe.

Indications

- 1- Classique.
- 2- Soit A et B deux éléments de $S_n\left(I\right)$ et $t\in\left[0,1\right]$; soit $C=\left(1-t\right)A+tB$. Soit

$$\lambda_1 = \max \left(\lambda_1 \left(A \right), \lambda_1 \left(B \right) \right)$$

$$\forall X \in M_{n,1}\left(\mathbb{R}\right), X^{T}CX = \left(1-t\right)X^{T}.A.X + tX^{T}.B.X \leq \left[\left(1-t\right)\lambda_{1}\left(A\right) + t\lambda_{2}\left(B\right)\right]X^{T}.X \leq \lambda_{1}X^{T}.X$$

Donc:

$$\lambda_1(C) < \lambda_1 < \sup(I)$$

Analogue pour inf (I). Donc $C \in S_n(I)$.

18 trAB > 0

Soit $A, B \in S_n^+$; montrer que tr $(AB) \ge 0$.

Indications

Soit $(X_1,...,X_n)$ une base orthonormale de vecteurs propres de $B: B.X_k = \lambda_k X_k$.

$$trAB = \sum_{k=1}^{n} \langle ABX_k, X_k \rangle = \sum_{k=1}^{n} \lambda_k \langle AX_k, X_k \rangle = \sum_{k=1}^{n} \lambda_k X_k^T . A. X_k \ge 0$$

car tout est positif.

$\det A < \prod_{i=1}^n a_{i,i}$ 19

Soit $A \in S_n^{++}(\mathbb{R})$.

- 1- Montrer que $\det A > 0$.
 - 2- Montrer que $\forall C \in M_n(\mathbb{R}), C^T.A.C \in S_n^+$.

 - 3- Montrer que $(\det A)^{\frac{1}{n}} \leq \frac{1}{n} \cdot \operatorname{tr}(A)$. 4- En choisissant C diagonale, montrer que $\det A \leq \prod_{i=1}^n a_{i,i}$.

Indications

- 1- A est diagonalisable à valeurs propres strictement positives.
- 3- Inégalité de convexité:

$$(\lambda_1...\lambda_n)^{\frac{1}{n}} \le \frac{1}{n} \sum_{j=1}^n \lambda_j$$

- 4- On choisit $c_j = \frac{1}{\sqrt{a_{j,j}}}$, $C = \text{diag}(c_1, ..., c_n)$, $A' = C^T.A.C$, et on applique la question 3 à A'. 4- Autre méthode : on peut écrire $A = C^2$ avec $C \in S_n^{++}$ et utiliser l'inégalité d'Hadamard.

$$20 \quad n\left(\det A\right)^{\frac{1}{n}} \le \operatorname{tr}\left(AB\right)$$

Soit $A, B \in S_n^{++}(\mathbb{R})$, avec $\det B = 1$. Montrer que $n (\det A)^{\frac{1}{n}} \leq \operatorname{tr}(AB)$.

Indications

Cas où B est diagonale : d'après une inégalité de convexité,

$$\frac{1}{n}.\text{tr}AB = \frac{1}{n}.\sum_{i=1}^{n} b_{i}a_{i,i} \ge \left(\prod_{i=1}^{n} b_{i}.a_{i,i}\right)^{\frac{1}{n}} = \left(\prod_{i=1}^{n} a_{i,i}\right)^{\frac{1}{n}} \ge (\det A)^{\frac{1}{n}}$$

 $\operatorname{car} \prod_{i=1}^{n} b_i = \det B = 1.$

 $\operatorname{Cas}\ \operatorname{g\'en\'eral}:$

On écrit $B = Q^T.B'.Q$ et $A = Q^T.A'.Q$ avec B' diagonale et Q orthogonale, et on est ramené au premier cas.

21 AB est diagonalisable

On suppose que $A \in S_n^{++}$ et $B \in S_n(\mathbb{R})$; montrer que AB est diagonalisable.

Indications

Soit $C \in S_n^{++}$ telle que $C^2 = A$; alors :

$$AB = C^2.B = C(CBC)C^{-1}$$

Donc AB est semblable à CBC qui est symétrique réelle, donc diagonalisable.

22
$$A * B \in S_n^+$$

On suppose que $A, B \in S_n^+$; on définit M = A * B par

$$m_{i,j} = a_{i,j}.b_{i,j}$$

Montrer que M est également symétrique positive, en écrivant $X^T.M.X$ comme la trace d'un produit.

Indications

Soit X un vecteur colonne.

$$X^{T}.M.X = \sum_{i,j} m_{i,j} x_{i} x_{j} = \sum_{i,j} a_{i,j} x_{i} x_{j} b_{i,j} = \text{tr} C.B^{T}$$

où $c_{i,j} = a_{i,j}x_ix_j$. Il reste à vérifier que C est symétrique positive et à utiliser un exercice déjà vu.

23
$$A \in S_n^{++}, \ a_{i,j} < 0 \ \text{si} \ i \neq j$$

Soit $A \in S_n^{++}$ telle que $a_{i,j} < 0$ si $i \neq j$. 1- Soit $\lambda = \min \left\{ V^T.A.V/V^T.V = 1 \right\}$; montrer que $\lambda \in \operatorname{Sp} A$.

2- Soit $V \in E_{\lambda}(A)$ non nul ; montrer que les v_i sont de même signe et non nuls.

3- Montrer que λ est valeur propre simple.

Indications

1- Classique (diagonaliser). λ est la plus petite valeur propre de A.

2-

$$V^{T}.A.V = \sum_{i=1}^{n} a_{i,i}v_{i}^{2} + 2\sum_{i < j} a_{i,j}v_{i}v_{j}$$

Notons $w_i = |v_i|$; $W^T.A.W \leq V^T.A.V$ en raison des signes des $a_{i,j}$; V réalisant le minimum, $V = \pm W$; donc les v_i sont de même signe.

Par ailleurs, pour tout i,

$$(\lambda - a_{i,i}) v_i = \sum_{j \neq i} a_{i,j} v_j$$

Si v_i était nul, tous les v_j seraient nuls, impossible.

3- Soit $H = \{V/v_n = 0\}$; d'après 2, $H \cap E_{\lambda}(A) = \{0\}$; donc $E_{\lambda}(A)$ est de dimension 1.

24
$$M^T + M^2 = I_n$$

Soit $M \in M_n(\mathbb{R})$ telle que $M^T + M^2 = I_n$.

1- Montrer que M est diagonalisable.

2- Montrer que M est symétrique.

Indications

Notons

$$P = X^4 - 2X^2 + X = X(X - 1)(X^2 + X - 1) = X(X - 1)Q$$

1- On montre que P(M) = 0.

2- Soit X une colonne telle que

$$M.X = 0$$

Alors $X^{T}.M^{T} = 0$, or $M^{T} = I_{n} - M^{2}$, donc $X^{T}(I_{n} - M^{2}) = 0$, d'où

$$X^T \left(I_n - M^2 \right) X = 0$$

Conclusion, $X^T ext{.} X = 0$, soit X = 0: on a montré que 0 n'est pas valeur propre de M. De même

On en déduit que Q(M) = 0, puis $M = M^T$.

25
$$A^T = A^2 + A - I_n$$

Chercher les $A \in M_n(\mathbb{R})$ telles que $A^T = A^2 + A - I_n$.

Indications

On peut montrer que $(A - I_n)(A + I_n)^3 = 0$; donc A est trigonalisable. Soit

$$B = A^2 - I_n = A^T - A$$

B est antisymétrique et trigonalisable (et même nilpotente) ; on en déduit que B=0. Conclusion : on trouve les A symétriques telles que $A^2=I_n$.

26
$$B^{-1} > A^{-1}$$

On suppose A>B>0, c'est-à-dire A,B et A-B symétriques définies positives. Montrer que $B^{-1}>A^{-1}$.

Indications

Soit $U \in \mathbb{R}^n$; on note $f(X) = -X^T.A.X + 2U^T.X$ et $g(X) = -X^T.B.X + 2U^T.X$. On montre que

$$\max f = U^T.A^{-1}.U$$

atteint pour $X_0 = A^{-1}U$; et analogue pour g.

27 Hyperplans dans $M_2(\mathbb{R})$

Soit V un hyperplan de $E = M_2(\mathbb{R})$ dont tous les éléments sont diagonalisables dans E.

- 1- Montrer que $I_2 \in V$.
- 2- Donner un exemple d'un tel hyperplan V.
- 3- Montrer qu'il existe $P \in GL_2(\mathbb{R})$ telle que $P^{-1}VP$ contienne toutes les matrices diagonales.
- 4- Montrer qu'il existe $Q \in GL_2(\mathbb{R})$ telle que $Q^{-1}VQ = S_2(\mathbb{R})$.

Indications

1- Utiliser l'ensemble des $\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}$.

Autre méthode:

si $I_2 \notin V$, $V + \mathbb{R}I_2 = E$, on en déduit facilement que toute matrice est diagonalisable, contradiction.

- 2- $S_2(\mathbb{R})$.
- 3- Utiliser une matrice $A \in V \setminus \mathbb{R}I_2$.
- 4- Notons

$$V' = P^{-1}VP$$

On montre que V' contient une matrice $\begin{bmatrix} 0 & d \\ c & 0 \end{bmatrix}$ non nulle. On montre que cd > 0. On termine à l'aide d'un changement de base qui conserve l'ensemble des matrices diagonales.

28 $M^{T}.M$ et $M.M^{T}$

Soit $M \in M_n(\mathbb{R})$. On note $E = \mathbb{R}^n$.

- 1- Comparer les rangs de $A = M^T . M$ et $B = M . M^T .$
- 2- Soit λ un réel non nul. Comparer $E_{\lambda}(A)$ et $E_{\lambda}(B)$.
- 3- Montrer l'existence d'une matrice orthogonale $P \in O(n)$ telle que

$$P^T.A.P = B$$