Polynômes d'endomorphismes

- 1 Soit $E = \mathbb{R}_n[X]$, $T: P \to P(X+1)$, $D: P \to P'$. Trouver leurs polynômes caractéristiques et minimaux.
- 2 Soit F un SEV de E stable par u, $u' \in L(F)$ l'endomorphisme induit. Montrer que le polynôme minimal $\pi_{u'}$ divise π_u .
- 3 On suppose E somme de SEV stables par $u: E = \sum_{k=1}^{q} E_k$. Exprimer π_u en fonction des π_k .
- **4** Soit u et v éléments de L(E). Montrer que si u et v ont un polynôme minimal, et s'ils commutent, alors u ov a un polynôme minimal.
- 5 Soit $A, B \in M_n(\mathbb{C})$ tels que $\chi_A = \chi_B$. Montrer que $\chi_{A^2} = \chi_{B^2}$. La réciproque est-elle vraie ?
- 6 Soit E un \mathbb{R} -EV de dimension finie n et $f \in L(E)$ tel que $f^2 = -Id$. Pour a et b réels, on pose : (a+ib).x = ax + bf(x). Montrer qu'on munit ainsi E d'une structure de \mathbb{C} -EV. Que dire de sa dimension ? De n ? Montrer directement que n est pair. Ecrire la matrice de f dans une base de E sur \mathbb{C} , puis sur \mathbb{R} .
- 7 Soit $u \in L(E)$, $P \in K[X]$ de degré $q \ge 1$ tels que Ker $P(u) \ne \{0\}$. Montrer qu'il existe un SEV F de E stable par u dont la dimension d vérifie $1 \le d \le q$. Montrer que χ_u est irréductible dans K[X] SSI $\{0\}$ et E sont les seuls SEV de E stables par u.
- 8 Soit $n \ge 1$; trouver les polynômes P tels que : $\forall A \in M_n(C), P(A) = 0 \Rightarrow tr(A) = 0$
- 9 Si E est de dimension finie, et $u \in GL(E)$, montrer que $u^{-1} \in K[u]$, par exemple en utilisant l'existence de π_u . Contre-exemple si la dimension n'est pas finie ?
- **10** Soit $n = \dim_{\mathbb{R}}(E)$ et $f \in L(E)$ tel que $f^2 + f + Id = 0$. Montrer que n est pair et réduire f.
- 11 Soit E un K-EV de dimension 3, f un élément de L(E) tel que $f^4 = f^2$. On suppose que 1 et -1 sont VP de f. Montrer que f est diagonalisable.
- 12 Trouver les matrices $A \in M_n(\mathbb{R})$, de trace nulle, telles que $A^3 4A^2 + 4A = 0$.
- 13 Soit E un K-EV, $f \in L(E)$, A, $B \in K[X]$. On note $U = A \wedge B$ et $V = A \vee B$. Exprimer images et noyaux de U(f) et V(f) en fonction de A(f) et B(f).
- 14 Soit $u \in L(E)$. a On suppose l'existence de $P \in K[X]$ tel que P(u) = 0, P(0) = 0, et $P'(0) \neq 0$. Montrer que $E = \text{Ker } u \oplus \text{Im } u$. b Montrer la réciproque si E est de dimension finie.
- 15 Soit A matrice carrée inversible, B son inverse. Exprimer χ_B en fonction de χ_A .
- **16** Soit E un K-EV; soit $u \in L(E)$ cyclique; soit E' un SEV stable par u; soit $u' \in L(E')$ l'endomorphisme induit; montrer que u' est cyclique, et qu'il existe un diviseur D de Π_u tel que E' = Ker D(u); montrer aussi que E' = Im P(u), si $\Pi_u = D.P$.
- 17 Soit A, B et M éléments de $M_n(\mathbb{R})$ tels que rg M=r et AM=MB. Montrer que $\mathrm{d}^\circ(\chi_A\wedge\chi_B)\geq r$.